(If you are attending the in-person workshop, please checkout to part_1
or workshop_part_2
and ignore the instructions below.)
-
Clone the Repository and Checkout the Correct Branch
git clone https://github.com/LambdaLabsML/AI_Agent_Masterclass.git cd <path_where_cloned_repo_lives>/AI_Agent_Masterclass
-
Create a
.env
File in the Root DirectoryLAMBDA_API_BASE="https://api.lambda.ai/v1" LAMBDA_API_KEY=<your_lambda_api_key> LAMBDA_MODEL="openai/llama-4-maverick-17b-128e-instruct-fp8"
-
Test that you can connect to Lambda's Inference API
source .env curl https://api.lambdalabs.com/v1/lambda/models -H "Authorization: Bearer $LAMBDA_API_KEY"
-
Run with Docker Compose (Recommended)
# Default (crews will run async and MLFlow will be launched) docker compose up --build # Once the container is up and running, you can visit the following link in your browser, to track the execution traces on MLFlow: http://0.0.0.0:8000/
-
(Optional) Run the Crews Synchronously Without MLflow
# Build the Docker image docker build -f Dockerfile.sync -t ml_agent_workshop_sync . # Run the container docker run ml_agent_workshop_sync # After the Docker Container is finished, get container ID docker ps -a # Copy reports from container to local machine docker cp <container_id>:/app/state_of_the_business/reports <your_local_computer_path>
-
(Optional) Run the Crews Asynchronously Without MLflow
# Build the Docker image docker build -f Dockerfile.async -t ml_agent_workshop_async . # Run the container docker run ml_agent_workshop_async # After the Docker Container is finished, get container ID docker ps -a # Copy reports from container to local machine docker cp <container_id>:/app/state_of_the_business/reports <your_local_computer_path>