Skip to content

LTTM/FlyAwareV2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

45 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿš FlyAwareV2: Multi-Modal UAV Dataset for Urban Semantic Segmentation

License: GPL3 Python 3.8+ Paper Dataset

The development of computer vision algorithms for Unmanned Aerial Vehicle (UAV) applications in urban environments heavily relies on the availability of large-scale datasets with accurate annotations. However, collecting and annotating real-world UAV data is extremely challenging and costly. To address this limitation, we present FlyAwareV2, a novel multimodal dataset encompassing both real and synthetic UAV imagery tailored for urban scene understanding tasks. Building upon the recently introduced SynDrone and FlyAware datasets, FlyAwareV2 introduces several new key contributions: 1) Multimodal data (RGB, depth, semantic labels) across diverse environmental conditions including varying weather and daytime; 2) Depth maps for real samples computed via state-of-the-art monocular depth estimation; 3) Benchmarks for RGB and multimodal semantic segmentation on standard architectures; 4) Studies on synthetic-to-real domain adaptation to assess the generalization capabilities of models trained on the synthetic data. With its rich set of annotations and environmental diversity, FlyAwareV2 provides a valuable resource for research on UAV-based 3D urban scene understanding.


๐Ÿ‘ฅ Authors

Francesco Barbato* Matteo Caligiuri* Pietro Zanuttigh

Department of Information Engineering, University of Padova, Via Gradenigo 6/b, 35131 Padova, Italy

* These authors contributed equally to this work.


๐Ÿ“Š Graphical Abstract

FlyAwareV2 Graphical Abstract

๐ŸŒŸ Key Features

  • ๐Ÿ™๏ธ Multi-Environment: Multiple urban towns and scenarios
  • ๐Ÿ“ Multi-Altitude: Different recording heights (20m, 50m, 120m)
  • ๐ŸŽฏ Multi-Modal: RGB, Depth, and Semantic annotations
  • ๐ŸŒฆ๏ธ Adverse Weather: Sunny, Rainy, Foggy, and Night conditions
  • ๐Ÿ”„ Synthetic + Real: CARLA-generated synthetic data + augmented real imagery
  • ๐Ÿ“Š Comprehensive Benchmarks: Complete evaluation suite with domain adaptation

Important

This dataset is specifically designed for adverse weather analysis in urban UAV scenarios, making it unique for studying weather-robust semantic segmentation algorithms.


๐ŸŽฏ Citation

If you use FlyAwareV2 in your research, please cite our paper:

@misc{barbato2025flyawarev2multimodalcrossdomainuav,
      title={FlyAwareV2: A Multimodal Cross-Domain UAV Dataset for Urban Scene Understanding}, 
      author={Francesco Barbato and Matteo Caligiuri and Pietro Zanuttigh},
      year={2025},
      eprint={2510.13243},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2510.13243}, 
}

โฌ‡๏ธ Dataset Download

Important

The FlyAwareV2 dataset is now available for download! Choose the version that best fits your research needs.

๐Ÿ”— Download Links

Dataset Version Size Description Download
๐ŸŽฎ Synthetic Only ~290 GB CARLA-generated data (script to download multiple zip files) Download Synthetic
๐Ÿ“ท Real Only ~6 GB Augmented real UAV imagery from UAVid & VisDrone (direct download) Download Real
๐Ÿ”„ Complete Dataset ~296 GB Both synthetic and real data (script) Download Complete

Note

Check the official download page for in-depth downlaod instruction.

๐Ÿ“ Recommended Folder Structure

After downloading and extracting the dataset, organize your data following this structure:

FlyAwareV2/
โ”œโ”€โ”€ ๐Ÿ“ real/
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ train/
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ day/               # Clear weather training data
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ rgb/           # RGB images
โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“ depth/         # Depth maps
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ fog/               # Foggy training data
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ night/             # Night training data
โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“ rain/              # Rainy training data
โ”‚   โ””โ”€โ”€ ๐Ÿ“ test/
โ”‚       โ”œโ”€โ”€ ๐Ÿ“ day/               # Test data with annotations
โ”‚       โ”‚   โ”œโ”€โ”€ ๐Ÿ“ rgb/
โ”‚       โ”‚   โ”œโ”€โ”€ ๐Ÿ“ depth/
โ”‚       โ”‚   โ”œโ”€โ”€ ๐Ÿ“ semantic/      # Semantic segmentation
โ”‚       โ”œโ”€โ”€ ๐Ÿ“ fog/
โ”‚       โ”œโ”€โ”€ ๐Ÿ“ night/
โ”‚       โ””โ”€โ”€ ๐Ÿ“ rain/
โ””โ”€โ”€ ๐Ÿ“ synthetic/
    โ”œโ”€โ”€ ๐Ÿ“ Town01_Opt_120/        # Urban environment 1
    โ”‚   โ”œโ”€โ”€ ๐Ÿ“ ClearNoon/         # Sunny conditions
    โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ height20m/     # 20m altitude
    โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ rgb/
    โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ depth/
    โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ semantic/
    โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“ camera/    # Camera parameters
    โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ height50m/     # 50m altitude
    โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“ height80m/     # 80m altitude
    โ”‚   โ”œโ”€โ”€ ๐Ÿ“ HardRainNoon/      # Rainy conditions
    โ”‚   โ”œโ”€โ”€ ๐Ÿ“ MidFoggyNoon/      # Foggy conditions
    โ”‚   โ””โ”€โ”€ ๐Ÿ“ ClearNight/        # Night conditions
    โ”œโ”€โ”€ ๐Ÿ“ Town02_Opt_120/        # Additional towns...
    โ”œโ”€โ”€ ๐Ÿ“ Town03_Opt_120/
    โ”œโ”€โ”€ ๐Ÿ“ Town04_Opt_120/
    โ”œโ”€โ”€ ๐Ÿ“ Town05_Opt_120/
    โ”œโ”€โ”€ ๐Ÿ“ Town06_Opt_120/
    โ”œโ”€โ”€ ๐Ÿ“ Town07_Opt_120/
    โ””โ”€โ”€ ๐Ÿ“ Town10HD_Opt_120/

Note

The complete folder structure contains over 100K+ images across all modalities and conditions. Each town includes 4 weather conditions and 3 altitude levels with RGB, depth, and semantic data.


๐Ÿ“Š Dataset Statistics

Modality Weather Conditions Towns Altitudes Total Samples
RGB + Depth + Semantic Sunny, Rainy, Foggy, Night 8 Towns 3 Heights 100K+

๐ŸŒค๏ธ Weather Conditions

Weather Description Real Data Synthetic Data
โ˜€๏ธ Sunny Clear weather conditions Native Simulated
๐ŸŒง๏ธ Rainy Rain effects and wet surfaces Augmented Simulated
๐ŸŒซ๏ธ Foggy Fog simulation with depth-aware effects Augmented Simulated
๐ŸŒ™ Night Low-light and artificial lighting Partially augmented Simulated

๐Ÿ—‚๏ธ Repository Structure

This repository contains all the code and tools for dataset generation, processing, and evaluation:

FlyAwareV2/
โ”œโ”€โ”€ ๐Ÿ“ synthetic_data_generation/  # CARLA-based synthetic data generation
โ”œโ”€โ”€ ๐Ÿ“ real_data_processing/       # Real data augmentation and processing
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ fog/                    # Fog simulation tools
โ”‚   โ””โ”€โ”€ ๐Ÿ“ rain_and_night/         # Rain and night augmentation
โ”œโ”€โ”€ ๐Ÿ“ benchmarks/                 # Comprehensive evaluation suite
โ”œโ”€โ”€ ๐Ÿ“ extras/                     # Additional resources and assets
โ””โ”€โ”€ ๐Ÿ“„ README.md                   # This file

๐Ÿ› ๏ธ Components Overview

Component Purpose Key Technologies
Synthetic Generation Generate realistic UAV imagery Modified CARLA Simulator
Real Data Processing Augment real imagery with weather effects MonoFog, img2img-turbo
Benchmarks Model evaluation and comparison PyTorch, Domain Adaptation

๐Ÿš€ Getting Started

๐Ÿ“‹ Prerequisites

  • Python 3.8+
  • PyTorch 1.9+
  • CUDA-compatible GPU (recommended)

1๏ธโƒฃ Clone the Repository

git clone --recursive https://github.com/LTTM/FlyAwareV2.git
cd FlyAwareV2

2๏ธโƒฃ Dataset Download

Download the dataset as described above


๐Ÿ”ง Usage

๐ŸŽฎ Synthetic Data Generation

Generate synthetic UAV data using our modified CARLA simulator:

cd synthetic_data_generation
# Follow detailed instructions in synthetic_data_generation/README.md
python run_simulation.py --config configs/urban_config.yaml

Key Features:

  • ๐Ÿ™๏ธ Multiple urban environments (8 towns)
  • ๐ŸŒฆ๏ธ All weather conditions simulation
  • ๐Ÿ“ Configurable flight altitudes
  • ๐ŸŽฏ Automatic semantic annotation

๐ŸŒŠ Real Data Augmentation

Transform clear real images into adverse weather conditions:

๐ŸŒซ๏ธ Fog Generation

cd real_data_processing/fog
python clear2fog.py --input <path_to_images> --output <output_path>

๐ŸŒง๏ธ Rain & Night Augmentation

cd real_data_processing/rain_and_night
python gradio_app.py  # Interactive interface

๐Ÿ“ˆ Benchmarking & Evaluation

Comprehensive model evaluation with our benchmark suite:

cd benchmarks
# Pre-training on synthetic data
python synthetic_pretrain.py --root_path <dataset_path> --config <config_file>

# Evaluation on real data
python evaluate.py --root_path <dataset_path> --model_path <checkpoint_path>

# Domain adaptation
python UDA_finetune.py --source synthetic --target real

Tip

Check the individual README files in each directory for detailed usage instructions and configuration options.


๐ŸŽฏ Applications

FlyAwareV2 is designed for various computer vision tasks:

  • ๐Ÿ” Semantic Segmentation: Urban scene understanding from aerial perspectives
  • ๐ŸŒฆ๏ธ Adverse Weather Analysis: Robust perception in challenging conditions
  • ๐Ÿ”„ Domain Adaptation: Bridging synthetic-to-real domain gaps
  • ๐Ÿš UAV Navigation: Autonomous drone navigation in urban environments
  • ๐Ÿ“Š Benchmark Studies: Standardized evaluation of aerial perception models

๐Ÿ“š Dataset Origins & Augmentation

๐ŸŽฎ Synthetic Data

  • Source: Modified CARLA Simulator
  • Enhancement: Custom urban scenarios and weather simulation
  • Coverage: 8 different towns with varied architectural styles

๐Ÿ“ท Real Data

  • Base Datasets:
    • UAVid - Urban aerial imagery
    • VisDrone - Drone-based object detection dataset
  • Augmentation: Custom weather transformation pipeline
  • Consistency: Domain-aware augmentation preserving semantic coherence

๐Ÿ† Benchmarks & Results

Our benchmark suite evaluates models across multiple dimensions:

  • ๐ŸŽฏ Semantic Segmentation Performance: mIoU, accuracy metrics
  • ๐ŸŒฆ๏ธ Weather Robustness: Performance degradation analysis
  • ๐Ÿ”„ Domain Adaptation: Synthetic-to-real transfer learning
  • โšก Computational Efficiency: FLOPs and inference time analysis

Note

Detailed benchmark results and leaderboards are available in the official paper.


๐Ÿค Contributing

We welcome contributions to improve FlyAwareV2! Please see our contributing guidelines:

  1. ๐Ÿด Fork the repository
  2. ๐ŸŒฟ Create a feature branch
  3. ๐Ÿ’ป Make your changes
  4. ๐Ÿงช Add tests if applicable
  5. ๐Ÿ“ Update documentation
  6. ๐Ÿš€ Submit a pull request

๐Ÿ“„ License

This project is licensed under the GPL-3.0 License - see the LICENSE file for details.


๐Ÿ™ Acknowledgments

  • CARLA Simulator for the base simulation environment;
  • UAVid Dataset and VisDrone Dataset for real aerial imagery;
  • imag2img-turbo and FoHIS for image translation tasks;
  • marigold for depth estimation;
  • This work was partially supported by the European Union under the Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU, partnership on "Telecommunications of the Future" (PE00000001- program "RESTART").

๐Ÿ“ž Support

For questions and support:


๐Ÿš Advancing UAV Perception in Urban Environments ๐Ÿ™๏ธ

Built with โค๏ธ by the MEDIALab Research Group

About

Repository containing all the code used to generate and process the FlyAware dataset

Topics

Resources

License

Stars

Watchers

Forks

Contributors 2

  •  
  •  

Languages