The development of computer vision algorithms for Unmanned Aerial Vehicle (UAV) applications in urban environments heavily relies on the availability of large-scale datasets with accurate annotations. However, collecting and annotating real-world UAV data is extremely challenging and costly. To address this limitation, we present FlyAwareV2, a novel multimodal dataset encompassing both real and synthetic UAV imagery tailored for urban scene understanding tasks. Building upon the recently introduced SynDrone and FlyAware datasets, FlyAwareV2 introduces several new key contributions: 1) Multimodal data (RGB, depth, semantic labels) across diverse environmental conditions including varying weather and daytime; 2) Depth maps for real samples computed via state-of-the-art monocular depth estimation; 3) Benchmarks for RGB and multimodal semantic segmentation on standard architectures; 4) Studies on synthetic-to-real domain adaptation to assess the generalization capabilities of models trained on the synthetic data. With its rich set of annotations and environmental diversity, FlyAwareV2 provides a valuable resource for research on UAV-based 3D urban scene understanding.
| Francesco Barbato* | Matteo Caligiuri* | Pietro Zanuttigh |
|---|
Department of Information Engineering, University of Padova, Via Gradenigo 6/b, 35131 Padova, Italy
* These authors contributed equally to this work.
- ๐๏ธ Multi-Environment: Multiple urban towns and scenarios
- ๐ Multi-Altitude: Different recording heights (20m, 50m, 120m)
- ๐ฏ Multi-Modal: RGB, Depth, and Semantic annotations
- ๐ฆ๏ธ Adverse Weather: Sunny, Rainy, Foggy, and Night conditions
- ๐ Synthetic + Real: CARLA-generated synthetic data + augmented real imagery
- ๐ Comprehensive Benchmarks: Complete evaluation suite with domain adaptation
Important
This dataset is specifically designed for adverse weather analysis in urban UAV scenarios, making it unique for studying weather-robust semantic segmentation algorithms.
If you use FlyAwareV2 in your research, please cite our paper:
@misc{barbato2025flyawarev2multimodalcrossdomainuav,
title={FlyAwareV2: A Multimodal Cross-Domain UAV Dataset for Urban Scene Understanding},
author={Francesco Barbato and Matteo Caligiuri and Pietro Zanuttigh},
year={2025},
eprint={2510.13243},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2510.13243},
}Important
The FlyAwareV2 dataset is now available for download! Choose the version that best fits your research needs.
| Dataset Version | Size | Description | Download |
|---|---|---|---|
| ๐ฎ Synthetic Only | ~290 GB | CARLA-generated data (script to download multiple zip files) | Download Synthetic |
| ๐ท Real Only | ~6 GB | Augmented real UAV imagery from UAVid & VisDrone (direct download) | Download Real |
| ๐ Complete Dataset | ~296 GB | Both synthetic and real data (script) | Download Complete |
Note
Check the official download page for in-depth downlaod instruction.
After downloading and extracting the dataset, organize your data following this structure:
FlyAwareV2/
โโโ ๐ real/
โ โโโ ๐ train/
โ โ โโโ ๐ day/ # Clear weather training data
โ โ โ โโโ ๐ rgb/ # RGB images
โ โ โ โโโ ๐ depth/ # Depth maps
โ โ โโโ ๐ fog/ # Foggy training data
โ โ โโโ ๐ night/ # Night training data
โ โ โโโ ๐ rain/ # Rainy training data
โ โโโ ๐ test/
โ โโโ ๐ day/ # Test data with annotations
โ โ โโโ ๐ rgb/
โ โ โโโ ๐ depth/
โ โ โโโ ๐ semantic/ # Semantic segmentation
โ โโโ ๐ fog/
โ โโโ ๐ night/
โ โโโ ๐ rain/
โโโ ๐ synthetic/
โโโ ๐ Town01_Opt_120/ # Urban environment 1
โ โโโ ๐ ClearNoon/ # Sunny conditions
โ โ โโโ ๐ height20m/ # 20m altitude
โ โ โ โโโ ๐ rgb/
โ โ โ โโโ ๐ depth/
โ โ โ โโโ ๐ semantic/
โ โ โ โโโ ๐ camera/ # Camera parameters
โ โ โโโ ๐ height50m/ # 50m altitude
โ โ โโโ ๐ height80m/ # 80m altitude
โ โโโ ๐ HardRainNoon/ # Rainy conditions
โ โโโ ๐ MidFoggyNoon/ # Foggy conditions
โ โโโ ๐ ClearNight/ # Night conditions
โโโ ๐ Town02_Opt_120/ # Additional towns...
โโโ ๐ Town03_Opt_120/
โโโ ๐ Town04_Opt_120/
โโโ ๐ Town05_Opt_120/
โโโ ๐ Town06_Opt_120/
โโโ ๐ Town07_Opt_120/
โโโ ๐ Town10HD_Opt_120/
Note
The complete folder structure contains over 100K+ images across all modalities and conditions. Each town includes 4 weather conditions and 3 altitude levels with RGB, depth, and semantic data.
| Modality | Weather Conditions | Towns | Altitudes | Total Samples |
|---|---|---|---|---|
| RGB + Depth + Semantic | Sunny, Rainy, Foggy, Night | 8 Towns | 3 Heights | 100K+ |
| Weather | Description | Real Data | Synthetic Data |
|---|---|---|---|
| โ๏ธ Sunny | Clear weather conditions | Native | Simulated |
| ๐ง๏ธ Rainy | Rain effects and wet surfaces | Augmented | Simulated |
| ๐ซ๏ธ Foggy | Fog simulation with depth-aware effects | Augmented | Simulated |
| ๐ Night | Low-light and artificial lighting | Partially augmented | Simulated |
This repository contains all the code and tools for dataset generation, processing, and evaluation:
FlyAwareV2/
โโโ ๐ synthetic_data_generation/ # CARLA-based synthetic data generation
โโโ ๐ real_data_processing/ # Real data augmentation and processing
โ โโโ ๐ fog/ # Fog simulation tools
โ โโโ ๐ rain_and_night/ # Rain and night augmentation
โโโ ๐ benchmarks/ # Comprehensive evaluation suite
โโโ ๐ extras/ # Additional resources and assets
โโโ ๐ README.md # This file
| Component | Purpose | Key Technologies |
|---|---|---|
| Synthetic Generation | Generate realistic UAV imagery | Modified CARLA Simulator |
| Real Data Processing | Augment real imagery with weather effects | MonoFog, img2img-turbo |
| Benchmarks | Model evaluation and comparison | PyTorch, Domain Adaptation |
- Python 3.8+
- PyTorch 1.9+
- CUDA-compatible GPU (recommended)
git clone --recursive https://github.com/LTTM/FlyAwareV2.git
cd FlyAwareV2Download the dataset as described above
Generate synthetic UAV data using our modified CARLA simulator:
cd synthetic_data_generation
# Follow detailed instructions in synthetic_data_generation/README.md
python run_simulation.py --config configs/urban_config.yamlKey Features:
- ๐๏ธ Multiple urban environments (8 towns)
- ๐ฆ๏ธ All weather conditions simulation
- ๐ Configurable flight altitudes
- ๐ฏ Automatic semantic annotation
Transform clear real images into adverse weather conditions:
cd real_data_processing/fog
python clear2fog.py --input <path_to_images> --output <output_path>cd real_data_processing/rain_and_night
python gradio_app.py # Interactive interfaceComprehensive model evaluation with our benchmark suite:
cd benchmarks
# Pre-training on synthetic data
python synthetic_pretrain.py --root_path <dataset_path> --config <config_file>
# Evaluation on real data
python evaluate.py --root_path <dataset_path> --model_path <checkpoint_path>
# Domain adaptation
python UDA_finetune.py --source synthetic --target realTip
Check the individual README files in each directory for detailed usage instructions and configuration options.
FlyAwareV2 is designed for various computer vision tasks:
- ๐ Semantic Segmentation: Urban scene understanding from aerial perspectives
- ๐ฆ๏ธ Adverse Weather Analysis: Robust perception in challenging conditions
- ๐ Domain Adaptation: Bridging synthetic-to-real domain gaps
- ๐ UAV Navigation: Autonomous drone navigation in urban environments
- ๐ Benchmark Studies: Standardized evaluation of aerial perception models
- Source: Modified CARLA Simulator
- Enhancement: Custom urban scenarios and weather simulation
- Coverage: 8 different towns with varied architectural styles
- Base Datasets:
- Augmentation: Custom weather transformation pipeline
- Consistency: Domain-aware augmentation preserving semantic coherence
Our benchmark suite evaluates models across multiple dimensions:
- ๐ฏ Semantic Segmentation Performance: mIoU, accuracy metrics
- ๐ฆ๏ธ Weather Robustness: Performance degradation analysis
- ๐ Domain Adaptation: Synthetic-to-real transfer learning
- โก Computational Efficiency: FLOPs and inference time analysis
Note
Detailed benchmark results and leaderboards are available in the official paper.
We welcome contributions to improve FlyAwareV2! Please see our contributing guidelines:
- ๐ด Fork the repository
- ๐ฟ Create a feature branch
- ๐ป Make your changes
- ๐งช Add tests if applicable
- ๐ Update documentation
- ๐ Submit a pull request
This project is licensed under the GPL-3.0 License - see the LICENSE file for details.
- CARLA Simulator for the base simulation environment;
- UAVid Dataset and VisDrone Dataset for real aerial imagery;
- imag2img-turbo and FoHIS for image translation tasks;
- marigold for depth estimation;
- This work was partially supported by the European Union under the Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU, partnership on "Telecommunications of the Future" (PE00000001- program "RESTART").
For questions and support:
- ๐ง Email: [email protected]
- ๐ Issues: GitHub Issues
- ๐ฌ Discussions: GitHub Discussions
๐ Advancing UAV Perception in Urban Environments ๐๏ธ
Built with โค๏ธ by the MEDIALab Research Group