Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement R1CS and QAP #10

Merged
merged 4 commits into from
Dec 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
98 changes: 98 additions & 0 deletions book/src/zksnark/subsec2.md
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,50 @@ O &= \begin{bmatrix}
\end{bmatrix}
\end{align*}

**Implementation:**

```rust
fn dot<F: Field>(a: &Vec<F>, b: &Vec<F>) -> F {
let mut result = F::zero();
for (a_i, b_i) in a.iter().zip(b.iter()) {
result = result + a_i.clone() * b_i.clone();
}
result
}

#[derive(Debug, Clone)]
pub struct R1CS<F: Field> {
pub left: Vec<Vec<F>>,
pub right: Vec<Vec<F>>,
pub out: Vec<Vec<F>>,
pub m: usize,
pub d: usize,
}

impl<F: Field> R1CS<F> {
pub fn new(left: Vec<Vec<F>>, right: Vec<Vec<F>>, out: Vec<Vec<F>>) -> Self {
let d = left.len();
let m = if d == 0 { 0 } else { left[0].len() };
R1CS {
left,
right,
out,
m,
d,
}
}

pub fn is_satisfied(&self, a: &Vec<F>) -> bool {
let zero = F::zero();
self.left
.iter()
.zip(self.right.iter())
.zip(self.out.iter())
.all(|((l, r), o)| dot(&l, &a) * dot(&r, &a) - dot(&o, &a) == zero)
}
}
```

## Quadratic Arithmetic Program (QAP)

Recall that the prover aims to demonstrate knowledge of a witness \\(w\\) without revealing it. This is equivalent to knowing a vector \\(a\\) that satisfies \\((L \cdot a) \circ (R \cdot a) = O \cdot a\\), where \\(\circ\\) denotes the Hadamard (element-wise) product. However, evaluating this equivalence directly requires \\(\Omega(d)\\) operations, where \\(d\\) is the number of rows. To improve efficiency, we can convert this matrix comparison to a polynomial comparison, leveraging the Schwartz-Zippel Lemma, which allows us to check polynomial equality with \\(\Omega(1)\\) evaluations.
Expand Down Expand Up @@ -210,3 +254,57 @@ To address this discrepancy, we introduce a degree \\(d\\) polynomial \\(t(x) =
\end{equation}

where \\(h(x) = \frac{\ell(x) \cdot r(x) - o(x)}{t(x)}\\). This formulation allows us to maintain the desired polynomial relationships while accounting for the degree differences.

**Implementation:**

```rust
#[derive(Debug, Clone)]
pub struct QAP<'a, F: Field> {
pub r1cs: &'a R1CS<F>,
pub t: Polynomial<F>,
}

impl<'a, F: Field> QAP<'a, F> {
fn new(r1cs: &'a R1CS<F>) -> Self {
QAP {
r1cs: r1cs,
t: Polynomial::<F>::from_monomials(
&(1..=r1cs.d).map(|i| F::from_value(i)).collect::<Vec<F>>(),
),
}
}

fn generate_polynomials(&self, a: &Vec<F>) -> (Polynomial<F>, Polynomial<F>, Polynomial<F>) {
let left_dot_products = self
.r1cs
.left
.iter()
.map(|v| dot(&v, &a))
.collect::<Vec<F>>();
let right_dot_products = self
.r1cs
.right
.iter()
.map(|v| dot(&v, &a))
.collect::<Vec<F>>();
let out_dot_products = self
.r1cs
.out
.iter()
.map(|v| dot(&v, &a))
.collect::<Vec<F>>();

let x = (1..=self.r1cs.m)
.map(|i| F::from_value(i))
.collect::<Vec<F>>();
let left_interpolated_polynomial = Polynomial::<F>::interpolate(&x, &left_dot_products);
let right_interpolated_polynomial = Polynomial::<F>::interpolate(&x, &right_dot_products);
let out_interpolated_polynomial = Polynomial::<F>::interpolate(&x, &out_dot_products);
(
left_interpolated_polynomial,
right_interpolated_polynomial,
out_interpolated_polynomial,
)
}
}
```
2 changes: 2 additions & 0 deletions myzkp/src/modules/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@ pub mod educational_protocols;
pub mod efield;
pub mod field;
pub mod polynomial;
pub mod qap;
pub mod r1cs;
pub mod ring;
pub mod utils;
// pub mod snark;
84 changes: 84 additions & 0 deletions myzkp/src/modules/qap.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
use num_traits::One;
use num_traits::Zero;

use crate::modules::field::Field;
use crate::modules::polynomial::Polynomial;
use crate::modules::r1cs::{dot, R1CS};

#[derive(Debug, Clone)]
pub struct QAP<'a, F: Field> {
pub r1cs: &'a R1CS<F>,
pub t: Polynomial<F>,
}

impl<'a, F: Field> QAP<'a, F> {
fn new(r1cs: &'a R1CS<F>) -> Self {
QAP {
r1cs: r1cs,
t: Polynomial::<F>::from_monomials(
&(1..=r1cs.d).map(|i| F::from_value(i)).collect::<Vec<F>>(),
),
}
}

fn generate_polynomials(&self, a: &Vec<F>) -> (Polynomial<F>, Polynomial<F>, Polynomial<F>) {
let left_dot_products = self
.r1cs
.left
.iter()
.map(|v| dot(&v, &a))
.collect::<Vec<F>>();
let right_dot_products = self
.r1cs
.right
.iter()
.map(|v| dot(&v, &a))
.collect::<Vec<F>>();
let out_dot_products = self
.r1cs
.out
.iter()
.map(|v| dot(&v, &a))
.collect::<Vec<F>>();

let x = (1..=self.r1cs.m)
.map(|i| F::from_value(i))
.collect::<Vec<F>>();
let left_interpolated_polynomial = Polynomial::<F>::interpolate(&x, &left_dot_products);
let right_interpolated_polynomial = Polynomial::<F>::interpolate(&x, &right_dot_products);
let out_interpolated_polynomial = Polynomial::<F>::interpolate(&x, &out_dot_products);
(
left_interpolated_polynomial,
right_interpolated_polynomial,
out_interpolated_polynomial,
)
}
}

#[cfg(test)]
mod tests {
use super::*;

use crate::modules::field::{FiniteFieldElement, ModEIP197};
use crate::modules::ring::Ring;

type F = FiniteFieldElement<ModEIP197>;

#[test]
fn test_qap_single_multiplication() {
// z = x * y
// (1, z, x, y) = (1, 3690, 82, 45)
let left = vec![vec![F::zero(), F::zero(), F::one(), F::zero()]];
let right = vec![vec![F::zero(), F::zero(), F::zero(), F::one()]];
let out = vec![vec![F::zero(), F::one(), F::zero(), F::zero()]];
let a = vec![
F::one(),
F::from_value(3690),
F::from_value(82),
F::from_value(45),
];
let r1cs = R1CS::new(left, right, out);
let qap = QAP::new(&r1cs);
let (_, _, _) = qap.generate_polynomials(&a);
}
}
Loading
Loading