-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9f9896a
commit 3d19c35
Showing
1 changed file
with
368 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,368 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"colab": { | ||
"name": "Machine Learning Exercise 4 - Support Vector Machines - Kavish and Florian.ipynb", | ||
"version": "0.3.2", | ||
"provenance": [], | ||
"collapsed_sections": [] | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
} | ||
}, | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "RdP4I6IKHgR4", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"import numpy as np\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"from PIL import Image, ImageFilter\n", | ||
"import imageio\n", | ||
"from sklearn import svm\n", | ||
"# import sklearn.svm.libsvm as svm\n", | ||
"# import sklearn.svm as svm" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "nXhattuZHysW", | ||
"colab_type": "code", | ||
"outputId": "2e825a6a-00e7-448b-8880-1f05e4f16737", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 34 | ||
} | ||
}, | ||
"source": [ | ||
"!git clone https://github.com/KavishBhatia/MachineLearning.git" | ||
], | ||
"execution_count": 0, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"text": [ | ||
"fatal: destination path 'MachineLearning' already exists and is not an empty directory.\n" | ||
], | ||
"name": "stdout" | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "hzSTrQtSH0jB", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"category = [\"positives\", \"negatives\"]\n", | ||
"ml = \"MachineLearning/\"\n", | ||
"\n", | ||
"def getPositiveImages():\n", | ||
" image_path = []\n", | ||
" for i in range(1,31):\n", | ||
" if i < 10:\n", | ||
" img_name = \"/p0\" + str(i)\n", | ||
" else:\n", | ||
" img_name = \"/p\" +str(i) \n", | ||
" path = ml + category[0] + img_name + \".png\"\n", | ||
" image_path.append(path)\n", | ||
" return image_path \n", | ||
"\n", | ||
"def getNegativeImages():\n", | ||
" image_path = []\n", | ||
" for i in range(1,31):\n", | ||
" if i < 10:\n", | ||
" img_name = \"/n0\" + str(i)\n", | ||
" else:\n", | ||
" img_name = \"/n\" +str(i) \n", | ||
" path = ml + category[1] + img_name + \".png\"\n", | ||
" image_path.append(path)\n", | ||
" return image_path" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "UyT8Uf-tSmhe", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"picturePathListPositive = getPositiveImages()\n", | ||
"picturePathListNegative = getNegativeImages()\n", | ||
"\n", | ||
"picturePathList = picturePathListPositive + picturePathListNegative\n", | ||
"# picturePathList" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "bZKQ00G8mruy", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"red = 0\n", | ||
"green = 1\n", | ||
"blue = 2\n", | ||
"m = 60 # total number of pos and neg images\n", | ||
"n = 3 #no of features\n", | ||
"\n", | ||
"def getPixelValues(imagepath):\n", | ||
" im = imageio.imread(imagepath)\n", | ||
" return im\n", | ||
"\n", | ||
"def computeMeanForAllColours(imagepath):\n", | ||
" pixValues = getPixelValues(imagepath)\n", | ||
" meanPixValues = np.mean(pixValues)\n", | ||
" return meanPixValues\n", | ||
"\n", | ||
"def computeMeanSingleColour(colour, imagepath):\n", | ||
" pixValues = getPixelValues(imagepath)\n", | ||
" meanPixValues = np.mean(pixValues[:,:,colour])\n", | ||
" return meanPixValues\n", | ||
"\n", | ||
"def filterMaxMean(image):\n", | ||
" img = Image.open(image)\n", | ||
" members = [(0,0)] * 4\n", | ||
" filteredMeanMax = 255\n", | ||
" for i in range(1,23):\n", | ||
" for j in range(1,23):\n", | ||
" members[0] = img.getpixel((i-1,j-1))\n", | ||
" members[1] = img.getpixel((i-1,j))\n", | ||
" members[2] = img.getpixel((i-1,j+1))\n", | ||
" members[3] = img.getpixel((i,j-1))\n", | ||
" tempFilteredMeanMax = np.mean(members)\n", | ||
" if tempFilteredMeanMax < filteredMeanMax:\n", | ||
" filteredMeanMax = tempFilteredMeanMax\n", | ||
" return (filteredMeanMax - 255)*(-1)\n", | ||
"\n", | ||
"def calcMeanEdges(imagepath):\n", | ||
" image = Image.open(imagepath)\n", | ||
" return np.mean(image.filter(ImageFilter.FIND_EDGES))\n", | ||
" \n", | ||
"def getFeaturesOneImage(imagepath):\n", | ||
" X = []\n", | ||
" X.append(filterMaxMean(imagepath))\n", | ||
" X.append(computeMeanForAllColours(imagepath))\n", | ||
" X.append(computeMeanSingleColour(red, imagepath))\n", | ||
" X.append(computeMeanSingleColour(blue, imagepath))\n", | ||
" X.append(calcMeanEdges(imagepath))\n", | ||
" X = np.asarray(X).reshape(1,n)\n", | ||
" return X" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "1sjA1u3onQYx", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"def getFeaturesOneImage(imagepath):\n", | ||
" X = []\n", | ||
" X.append((filterMaxMean(imagepath)))\n", | ||
" X.append((computeMeanSingleColour(blue, imagepath)))\n", | ||
" X.append((calcMeanEdges(imagepath)))\n", | ||
" #X = np.asarray(X).reshape(1,n)\n", | ||
" return X\n", | ||
" \n", | ||
"SVMDataArray = []\n", | ||
"\n", | ||
"for i in picturePathList:\n", | ||
" SVMDataArray.append(getFeaturesOneImage(i))\n", | ||
" \n", | ||
"labelList = np.ones(30)\n", | ||
"labelListZeroes = np.zeros(30)\n", | ||
"labelList = np.append(labelList, labelListZeroes)\n", | ||
"labelList = labelList.tolist()\n", | ||
"\n", | ||
"# SVMDataArray" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "wTy1E__nUerw", | ||
"colab_type": "code", | ||
"outputId": "e9c0d190-40ff-4938-a637-77adf246a95e", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 84 | ||
} | ||
}, | ||
"source": [ | ||
"# from sklearn import svm\n", | ||
"SupportVM = svm.SVC(kernel='linear') # kernel names: ‘linear’, ‘poly’, ‘sigmoid’, ‘rbf’\n", | ||
"SupportVM.fit(SVMDataArray, labelList)" | ||
], | ||
"execution_count": 0, | ||
"outputs": [ | ||
{ | ||
"output_type": "execute_result", | ||
"data": { | ||
"text/plain": [ | ||
"SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n", | ||
" decision_function_shape='ovr', degree=3, gamma='auto_deprecated',\n", | ||
" kernel='linear', max_iter=-1, probability=False, random_state=None,\n", | ||
" shrinking=True, tol=0.001, verbose=False)" | ||
] | ||
}, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"execution_count": 18 | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "Cdb7bRCnj6lF", | ||
"colab_type": "code", | ||
"outputId": "f386e84c-18ac-4826-c912-f6a07e7f9cf8", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 34 | ||
} | ||
}, | ||
"source": [ | ||
"SupportVM.predict([[135.8, 158.1, 40.]])\n" | ||
], | ||
"execution_count": 0, | ||
"outputs": [ | ||
{ | ||
"output_type": "execute_result", | ||
"data": { | ||
"text/plain": [ | ||
"array([1.])" | ||
] | ||
}, | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"execution_count": 19 | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "4adQKhkakcYx", | ||
"colab_type": "code", | ||
"outputId": "352251c7-ac13-4454-b493-ea5d1632da04", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 34 | ||
} | ||
}, | ||
"source": [ | ||
"from sklearn.model_selection import KFold\n", | ||
"\n", | ||
"\n", | ||
"\n", | ||
"SVMDataArray = np.array(SVMDataArray)\n", | ||
"labelList = np.array(labelList)\n", | ||
"kf = KFold(n_splits=10)\n", | ||
"kf.get_n_splits(SVMDataArray)\n", | ||
"\n", | ||
"counterLin = 0\n", | ||
"counterPoly = 0\n", | ||
"counterSig = 0\n", | ||
"counterRad = 0\n", | ||
"\n", | ||
"for train_index, test_index in kf.split(SVMDataArray):\n", | ||
"# print(\"TRAIN:\", train_index, \"TEST:\", test_index)\n", | ||
"# print(SVMDataArray[train_index])\n", | ||
" X_train, X_test = SVMDataArray[train_index], SVMDataArray[test_index]\n", | ||
" y_train, y_test = labelList[train_index], labelList[test_index]\n", | ||
" \n", | ||
" svmLinear = svm.SVC(kernel='linear', gamma='auto')\n", | ||
" svmPoly = svm.SVC(kernel='poly', gamma='auto')\n", | ||
" svmSigmoid = svm.SVC(kernel='sigmoid', gamma='auto')\n", | ||
" svmRadial = svm.SVC(kernel='rbf', gamma=.01)\n", | ||
" \n", | ||
" svmLinear.fit(X_train, y_train)\n", | ||
" svmPoly.fit(X_train, y_train)\n", | ||
" svmSigmoid.fit(X_train, y_train)\n", | ||
" svmRadial.fit(X_train, y_train)\n", | ||
" \n", | ||
" for i in range(6):\n", | ||
" predictionLin = svmLinear.predict([X_test[i]])\n", | ||
" predictionPoly = svmPoly.predict([X_test[i]])\n", | ||
" predictionSig = svmSigmoid.predict([X_test[i]])\n", | ||
" predictionRad = svmRadial.predict([X_test[i]])\n", | ||
" testLabel = y_test[i]\n", | ||
" \n", | ||
" if predictionLin == testLabel:\n", | ||
" counterLin += 1\n", | ||
" \n", | ||
" if predictionPoly == testLabel:\n", | ||
" counterPoly += 1\n", | ||
" \n", | ||
" if predictionSig != testLabel:\n", | ||
" counterSig += 1\n", | ||
" \n", | ||
" if predictionRad == testLabel:\n", | ||
" counterRad += 1\n", | ||
"\n", | ||
"print('Results for Lin:', counterLin, \n", | ||
" 'Results for Poly:', counterPoly,\n", | ||
" 'Results for Sig:', counterSig,\n", | ||
" 'Results for Rad:', counterRad)\n", | ||
"\n", | ||
"# print (kf)\n", | ||
"# print(svmLinear.predict([[135.8, 158.1, 40.]]))\n", | ||
"# print(svmPoly.predict([[135.8, 158.1, 40.]]))\n", | ||
"# print(svmSigmoid.predict([[135.8, 158.1, 40.]]))\n", | ||
"# print(svmRadial.predict([[135.8, 158.1, 40.]]))\n", | ||
" " | ||
], | ||
"execution_count": 0, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"text": [ | ||
"Results for Lin: 60 Results for Poly: 59 Results for Sig: 60 Results for Rad: 60\n" | ||
], | ||
"name": "stdout" | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "EhlYwYr3t4t7", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
} | ||
] | ||
} |