-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
trying to fix the mess that i made when i started writing docs
Showing
1 changed file
with
134 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
|
||
|
||
``` @meta | ||
CurrentModule = LaplaceRedux | ||
``` | ||
|
||
## Libraries | ||
|
||
Import the libraries required to run this example | ||
|
||
``` julia | ||
using Pkg; Pkg.activate("docs") | ||
# Import libraries | ||
using Flux, Plots, TaijaPlotting, Random, Statistics, LaplaceRedux | ||
theme(:wong) | ||
``` | ||
|
||
## Data | ||
|
||
We first generate some synthetic data: | ||
|
||
``` julia | ||
using LaplaceRedux.Data | ||
n = 300 # number of observations | ||
σtrue = 0.30 # true observational noise | ||
x, y = Data.toy_data_regression(n;noise=σtrue) | ||
xs = [[x] for x in x] | ||
X = permutedims(x) | ||
``` | ||
|
||
## MLP | ||
|
||
We set up a model and loss with weight regularization: | ||
|
||
``` julia | ||
data = zip(xs,y) | ||
n_hidden = 50 | ||
D = size(X,1) | ||
nn = Chain( | ||
Dense(D, n_hidden, tanh), | ||
Dense(n_hidden, 1) | ||
) | ||
loss(x, y) = Flux.Losses.mse(nn(x), y) | ||
``` | ||
|
||
We train the model: | ||
|
||
``` julia | ||
using Flux.Optimise: update!, Adam | ||
opt = Adam(1e-3) | ||
epochs = 1000 | ||
avg_loss(data) = mean(map(d -> loss(d[1],d[2]), data)) | ||
show_every = epochs/10 | ||
|
||
for epoch = 1:epochs | ||
for d in data | ||
gs = gradient(Flux.params(nn)) do | ||
l = loss(d...) | ||
end | ||
update!(opt, Flux.params(nn), gs) | ||
end | ||
if epoch % show_every == 0 | ||
println("Epoch " * string(epoch)) | ||
@show avg_loss(data) | ||
end | ||
end | ||
``` | ||
|
||
## Laplace Approximation | ||
|
||
Laplace approximation can be implemented as follows: | ||
|
||
``` julia | ||
subset_w = :all | ||
la = Laplace(nn; likelihood=:regression, subset_of_weights=subset_w) | ||
fit!(la, data) | ||
plot(la, X, y; zoom=-5, size=(400,400)) | ||
``` | ||
|
||
 | ||
|
||
Next we optimize the prior precision $P_0$ and and observational noise $\sigma$ using Empirical Bayes: | ||
|
||
``` julia | ||
optimize_prior!(la; verbose=true) | ||
plot(la, X, y; zoom=-5, size=(400,400)) | ||
``` | ||
|
||
loss(exp.(logP₀), exp.(logσ)) = 104.78561546028183 | ||
Log likelihood: -70.48742092717352 | ||
Log det ratio: 41.1390695290454 | ||
Scatter: 27.45731953717124 | ||
loss(exp.(logP₀), exp.(logσ)) = 104.9736282327825 | ||
Log likelihood: -74.85481357633174 | ||
Log det ratio: 46.59827618892447 | ||
Scatter: 13.639353123977058 | ||
loss(exp.(logP₀), exp.(logσ)) = 84.38222356291794 | ||
Log likelihood: -54.86985627702764 | ||
Log det ratio: 49.92347667032635 | ||
Scatter: 9.101257901454279 | ||
|
||
loss(exp.(logP₀), exp.(logσ)) = 84.53493863039972 | ||
Log likelihood: -55.013137224636 | ||
Log det ratio: 51.43622180356522 | ||
Scatter: 7.607381007962245 | ||
loss(exp.(logP₀), exp.(logσ)) = 83.95921598606084 | ||
Log likelihood: -54.41492266831395 | ||
Log det ratio: 51.794520967146354 | ||
Scatter: 7.294065668347427 | ||
loss(exp.(logP₀), exp.(logσ)) = 83.03505059021086 | ||
Log likelihood: -53.50540374805591 | ||
Log det ratio: 51.574749787874794 | ||
Scatter: 7.484543896435117 | ||
|
||
loss(exp.(logP₀), exp.(logσ)) = 82.97840036025443 | ||
Log likelihood: -53.468475394115416 | ||
Log det ratio: 51.17273666609066 | ||
Scatter: 7.847113266187348 | ||
loss(exp.(logP₀), exp.(logσ)) = 82.98550025321256 | ||
Log likelihood: -53.48508828283467 | ||
Log det ratio: 50.81442045868749 | ||
Scatter: 8.186403482068298 | ||
loss(exp.(logP₀), exp.(logσ)) = 82.9584040552644 | ||
Log likelihood: -53.45989630330948 | ||
Log det ratio: 50.59063282947659 | ||
Scatter: 8.406382674433235 | ||
|
||
|
||
loss(exp.(logP₀), exp.(logσ)) = 82.94465052328141 | ||
Log likelihood: -53.44600301956443 | ||
Log det ratio: 50.500079294094405 | ||
Scatter: 8.497215713339543 | ||
|
||
 |