Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
ablaom committed Jun 13, 2021
2 parents 446b8ce + ebc4179 commit 09c43eb
Show file tree
Hide file tree
Showing 2 changed files with 62 additions and 10 deletions.
23 changes: 13 additions & 10 deletions .github/workflows/CI.yml
Original file line number Diff line number Diff line change
@@ -1,15 +1,13 @@
name: CI
env:
CODECOV_TOKEN: 'b04186a9-0742-481a-be3e-e7457120db3f'

on:
pull_request:
branches:
- master
- dev
push:
branches:
- master
- dev
tags: '*'
branches: "dev"
tags: ["*"]
pull_request:
release:

jobs:
test:
Expand Down Expand Up @@ -45,5 +43,10 @@ jobs:
${{ runner.os }}-test-${{ env.cache-name }}-
${{ runner.os }}-test-
${{ runner.os }}-
- uses: julia-actions/julia-buildpkg@v1
- uses: julia-actions/julia-runtest@v1
- uses: julia-actions/julia-buildpkg@latest
- uses: julia-actions/julia-runtest@latest
- uses: julia-actions/[email protected]
continue-on-error: true
- uses: julia-actions/[email protected]
continue-on-error: true

49 changes: 49 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
# MLJEnsembles.jl

[![Build status](https://github.com/JuliaAI/MLJEnsembles.jl/workflows/CI/badge.svg)](https://github.com/JuliaAI/MLJEnsembles.jl/actions) [![codecov.io](http://codecov.io/github/JuliaAI/MLJEnsembles.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaAI/MLJEnsembles.jl?branch=master)

A package to create bagged homogeneous ensembles of
machine learning models using the
[MLJ](https://alan-turing-institute.github.io/MLJ.jl/dev/) machine
learning framework.

For combining models in more general ways, see the [Composing
Models](https://alan-turing-institute.github.io/MLJ.jl/dev/composing_models/#Composing-Models)
section of the MLJ manual.


## Installation

No installation is necessary when using MLJ, which is installed like this:

```julia
using Pkg
Pkg.add("MLJ")\
using MLJ
```

Alternatively, for a "minimal" installation:

```julia
using Pkg
Pkg.add("MLJBase")
Pkg.add("MLJEnsembles")
using MLJBase, MLJEnsembles
```

In this case you will also need to load code defining an atomic model
to ensemble. The easiest way to do this is run `Pkg.add("MLJModels");
using MLJModels` and use the `@load` macro. See the [Loading Model
Code](https://alan-turing-institute.github.io/MLJ.jl/dev/loading_model_code/)
of the MLJ manual for this and other possibilities.


## Sample usage

See [Data Science Tutorials](https://alan-turing-institute.github.io/DataScienceTutorials.jl/getting-started/ensembles/).


## Documentation

See the [MLJ manual](https://alan-turing-institute.github.io/MLJ.jl/dev/homogeneous_ensembles/#Homogeneous-Ensembles).

0 comments on commit 09c43eb

Please sign in to comment.