-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSB3_DQN.py
167 lines (134 loc) · 6.54 KB
/
SB3_DQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gymnasium as gym
import stable_baselines3
from stable_baselines3 import DQN
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.results_plotter import load_results, ts2xy
import ttenv
import torch
import numpy as np
import argparse
from policy_net import SEED1, set_seed, CustomCNN
# tools
import os
import datetime
current_time = datetime.datetime.now()
time_string = current_time.strftime('%Y-%m-%d_%H')
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--env', help='environment ID', type=str, default='TargetTracking-v5')
parser.add_argument('--render', help='whether to render', type=int, default=1)
parser.add_argument('--record', help='whether to record', type=int, default=0)
parser.add_argument('--ros', help='whether to use ROS', type=int, default=0)
parser.add_argument('--nb_targets', help='the number of targets', type=int, default=1)
parser.add_argument('--log_dir', help='a path to a directory to log your data', type=str,
default='./models/dqn_cnn-' + time_string + '/')
# parser.add_argument('--map', type=str, default="obstacles02")
parser.add_argument('--map', type=str, default="dynamic_map")
parser.add_argument('--repeat', type=int, default=1)
parser.add_argument('--im_size', type=int, default=28)
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--max_episode_step', type=int, default=200)
# 自定义类型函数,将输入的字符串解析为矩阵
def matrix_type(matrix_string):
matrix = np.array(eval(matrix_string)) # 将字符串解析为矩阵
return matrix
parser.add_argument('--target_path', type=matrix_type, default=[[1, 2], [3, 4]]) # episode*T*4
args = parser.parse_args()
class SaveOnBestTrainingRewardCallback(BaseCallback):
"""
Callback for saving a model (the check is done every ``check_freq`` steps)
based on the training reward (in practice, we recommend using ``EvalCallback``).
:param check_freq: (int)
:param log_dir: (str) Path to the folder where the model will be saved.
It must contains the file created by the ``Monitor`` wrapper.
:param verbose: (int)
"""
def __init__(self, check_freq: int, log_dir: str, save_path: str, verbose=1):
super(SaveOnBestTrainingRewardCallback, self).__init__(verbose)
self.check_freq = check_freq
self.log_dir = log_dir
self.save_path_best = os.path.join(save_path, 'best_model')
self.path_process = save_path
self.best_mean_reward = -np.inf
def _init_callback(self) -> None:
# Create folder if needed
if self.save_path_best is not None:
os.makedirs(self.save_path_best, exist_ok=True)
def _on_step(self) -> bool:
if self.n_calls % self.check_freq == 0:
# Retrieve training reward
x, y = ts2xy(load_results(self.log_dir), 'timesteps')
if len(x) > 0:
# Mean training reward over the last 100 episodes
mean_reward = np.mean(y[-100:])
if self.verbose > 0:
print("Num timesteps: {}".format(self.num_timesteps))
print(
"Best mean reward: {:.2f} - Last mean reward per episode: {:.2f}".format(self.best_mean_reward,
mean_reward))
# New best model, you could save the agent here
if mean_reward > self.best_mean_reward:
self.best_mean_reward = mean_reward
# Example for saving best model
if self.verbose > 0:
print("Saving new best model to {}".format(self.save_path_best))
self.model.save(self.save_path_best)
# save model every 100000 timesteps:
if self.n_calls % (20000) == 0:
# Retrieve training reward
path = self.path_process + str(self.n_calls) + '_model'
self.model.save(path)
return True
def main():
env = ttenv.make(args.env,
render=args.render,
record=args.record,
ros=args.ros,
map_name=args.map,
directory=args.log_dir,
num_targets=args.nb_targets,
is_training=False,
im_size=args.im_size,
t_steps=args.max_episode_step
)
monitor_dir = './models/monitor/'
os.makedirs(monitor_dir, exist_ok=True)
env = Monitor(env, monitor_dir)
set_seed(SEED1)
# vec_env = make_vec_env(env, n_envs=4)
learn(env, monitor_dir)
# evaluate(env)
# env_test(env)
def learn(env, monitor_dir):
# 获取当前时间
os.makedirs(args.log_dir, exist_ok=True)
callback = SaveOnBestTrainingRewardCallback(check_freq=2000, log_dir=monitor_dir, save_path=args.log_dir)
# policy_kwargs = dict(net_arch=[128, 128, 128]) # 设置网络结构为3层128节点的感知机
# model = DQN("MlpPolicy", env, policy_kwargs=policy_kwargs, verbose=1, learning_rate=0.001, buffer_size=1000,
# batch_size=64, target_update_interval=50, tensorboard_log=("./log/DQN_" + time_string))
policy_kwargs = dict(
features_extractor_class=CustomCNN,
features_extractor_kwargs=dict(features_dim=512),
net_arch=[512, 512]
) # 设置网络结构为自定义的网络架构(支持自定义输入)
model = DQN("CnnPolicy", env, policy_kwargs=policy_kwargs, verbose=1, learning_rate=0.001, buffer_size=1000,
batch_size=64, target_update_interval=50, tensorboard_log=("./log/DQN_" + time_string), device="cuda")
model.learn(total_timesteps=1000000, log_interval=5, callback=callback)
model.save(args.log_dir + 'final_model')
def evaluate(env):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = DQN.load("./models/dqn_cnn-2023-12-01_12/best_model.zip", device='cpu')
obs, _ = env.reset()
while True:
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, _, inf = env.step(action)
env.render()
def env_test(env):
obs, _ = env.reset()
while True:
action = np.array(np.random.randint(0, 12)) # 生成 0 到 11 之间的整数随机数
obs, reward, done, _, inf = env.step(action)
env.render()
if __name__ == "__main__":
main()