Skip to content

IPK-BIT/divassociate

Folders and files

NameName
Last commit message
Last commit date

Latest commit

b5fc09a · Jan 27, 2025

History

35 Commits
Jan 16, 2025
Jan 27, 2025
Jan 27, 2025
Jan 27, 2025
Jan 27, 2025
Jan 16, 2025
Dec 1, 2023
Jan 27, 2025
Aug 7, 2024
Jan 27, 2025
Jan 27, 2025
Jan 27, 2025
Jan 27, 2025
Jan 16, 2025

Repository files navigation

DivAssociate Banner

GitHub License

DivAssociate is a workflow implemented in Nextflow to perform a GWAS using GEMMA's [1] Linear Mixed Model algorithm. It uses genotyping data in VCF format and phenotyping data in a CSV file.

Worfklow visualization

Worfklow visualization

Loading
%%{init: {"flowchart": {"defaultRenderer": "elk"}} }%%
flowchart LR
    subgraph PREPARE_INPUTS
    direction LR
    subgraph take1[take]
    vcf
    samples
    phenotypes
    covariates
    end
    extract_prefix([extract_prefix])
    slice_vcf([slice_vcf])
    transform_vcf([transform_vcf])
    correct_phenotypes([correct_phenotypes])
    transform_phenotypes([transform_phenotypes])
    combine_with_pheno([combine_with_pheno])

    subgraph emit1[emit]
    bim
    bed
    fam
    end

    vcf-->slice_vcf
    vcf-->extract_prefix-->transform_vcf
    samples-->slice_vcf
    slice_vcf-->transform_vcf-->bim
    transform_vcf-->bed
    transform_vcf-->combine_with_pheno
    phenotypes-->correct_phenotypes
    covariates-->correct_phenotypes-->transform_phenotypes-->combine_with_pheno
    combine_with_pheno-->fam
    end

    subgraph PERFORM_ASSOCIATION_STUDY
    direction LR
    subgraph take2[take]
    bed2[bed]
    bim2[bim]
    fam2[fam]
    end

    compute_relatedness_matrix([compute_relatedness_matrix])
    perform_association_test([perform_association_test])
    
    subgraph emit2[emit]
    assoc1[assoc]
    end

    bed2-->compute_relatedness_matrix
    bim2-->compute_relatedness_matrix
    fam2-->compute_relatedness_matrix

    
    bed2-->perform_association_test
    bim2-->perform_association_test
    fam2-->perform_association_test

    compute_relatedness_matrix-->perform_association_test-->assoc1

    end

    subgraph PREPARE_OUTPUTS
    direction LR
    subgraph take3[take]
    assoc2[assoc]
    end
    plot_overview([plot_overview])
    split_chromosome([split_chromosome])
    plot_chromosome_overview([plot_chromosome_overview])

    assoc2-->plot_overview
    assoc2-->split_chromosome-->plot_chromosome_overview
    end
    bed-->bed2
    bim-->bim2
    fam-->fam2
    assoc1-->assoc2

Citations

[1] Zhou, X., Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44, 821–824 (2012). https://doi.org/10.1038/ng.2310

[2] Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011 Nov 1;27(21):2987-93. doi: 10.1093/bioinformatics/btr509. Epub 2011 Sep 8. PMID: 21903627; PMCID: PMC3198575.

[3] Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., ... & Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. The American journal of human genetics, 81(3), 559-575.

[4] Felipe da Veiga Leprevost, Björn A Grüning, Saulo Alves Aflitos, Hannes L Röst, Julian Uszkoreit, Harald Barsnes, Marc Vaudel, Pablo Moreno, Laurent Gatto, Jonas Weber, Mingze Bai, Rafael C Jimenez, Timo Sachsenberg, Julianus Pfeuffer, Roberto Vera Alvarez, Johannes Griss, Alexey I Nesvizhskii, Yasset Perez-Riverol, BioContainers: an open-source and community-driven framework for software standardization, Bioinformatics, Volume 33, Issue 16, August 2017, Pages 2580–2582, https://doi.org/10.1093/bioinformatics/btx192

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published