Skip to content

Commit

Permalink
Merge pull request #15 from JYuhao88/yuhao_dev
Browse files Browse the repository at this point in the history
Feats: Improved the face motion augmentation
  • Loading branch information
linjing7 authored Oct 30, 2023
2 parents dc92266 + bfdff51 commit cfa4760
Show file tree
Hide file tree
Showing 2 changed files with 289 additions and 18 deletions.
79 changes: 61 additions & 18 deletions mocap-dataset-process/face_motion_augmentation.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,13 @@
import argparse
import json
import os
import numpy as np
from tqdm import tqdm

import torch
import torch.nn.functional as F
from slerp import slerp_interpolate
from multiprocessing import Pool


def findAllFile(base):
file_path = []
Expand All @@ -12,25 +17,63 @@ def findAllFile(base):
file_path.append(fullname)
return file_path

motion_folder = '../datasets/motion_data/smplx_322'

for mocap_dataset in ['humanml', 'EgoBody', 'GRAB']:
motion_folder = "../datasets/motion_data/smplx_322"

mocap_motion_folder = os.path.join(motion_folder, mocap_dataset)
mocap_motion_files = findAllFile(mocap_motion_folder)
for mocap_motion_file in tqdm(mocap_motion_files):
face_motion_file = mocap_motion_file.replace('/motion_data/', '/face_motion_data/')
motion = np.load(mocap_motion_file)
motion_length = motion.shape[0]

def face_motion_augmentation(mocap_motion_file):
face_motion_file = mocap_motion_file.replace("/motion_data/", "/face_motion_data/")
motion = np.load(mocap_motion_file)
if os.path.exists(face_motion_file):
face_motion = np.load(face_motion_file)
else:
return face_motion_file # not found face motion file

motion_length, face_motion_length = motion.shape[0], face_motion.shape[0]
if motion_length != face_motion_length:
face_motion = torch.from_numpy(face_motion)
n_frames, n_dims = face_motion.shape
n_joints = n_dims // 3
face_motion = face_motion.reshape(n_frames, n_joints, 3)
face_motion = slerp_interpolate(face_motion, motion_length)
face_motion = face_motion.reshape(motion_length, -1).numpy()
(
motion[:, 66 + 90 : 66 + 93],
motion[:, 159 : 159 + 50],
motion[:, 209 : 209 + 100],
) = (face_motion[:, :3], face_motion[:, 3 : 3 + 50], face_motion[:, 53:153])
np.save(mocap_motion_file, motion)
return None


if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--num_proc", type=int, default=len(os.sched_getaffinity(0)) // 2
)
args = parser.parse_args()

not_found_face_motion_files = []
for mocap_dataset in ["humanml", "EgoBody", "GRAB"]:
mocap_motion_folder = os.path.join(motion_folder, mocap_dataset)

mocap_motion_files = findAllFile(mocap_motion_folder)
with Pool(args.num_proc) as p:
with tqdm(total=len(mocap_motion_files)) as pbar:
for not_found_face_motion_file in p.imap_unordered(
face_motion_augmentation, mocap_motion_files
):
not_found_face_motion_files.append(not_found_face_motion_file)
pbar.update(1)

# perform motion interpolation to avoid frame rate mismatch
if face_motion.shape[0] != motion_length:
face_motion = torch.from_numpy(face_motion)
face_motion = face_motion[None].permute(0, 2, 1) # [1, num_feats, num_frames]
face_motion = F.interpolate(face_motion, size=motion_length, mode='linear') # motion interpolate
face_motion = face_motion.permute(0, 2, 1)[0].numpy() # [num_frames, num_feats]
not_found_face_motion_files = list(
filter(lambda x: x is not None, not_found_face_motion_files)
)

motion[:, 66 + 90:66 + 93], motion[:, 159:159 + 50], motion[:, 209:209 + 100] = \
face_motion[:, :3], face_motion[:, 3:3+50], face_motion[:, 53:153]
np.save(mocap_motion_file, motion)
print(
"The count of not_found_face_motion_files: ", len(not_found_face_motion_files)
)
json.dump(
not_found_face_motion_files,
open(os.path.join("./", "not_found_face_motion_files.json"), "w"),
)
228 changes: 228 additions & 0 deletions mocap-dataset-process/slerp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,228 @@
"""
The implementation of so3_exp_map and so3_log_map is sourced from the
pytorch3d.transforms module, which is a part of the PyTorch3D library.
For in-depth documentation and additional information, you can refer to
the PyTorch3D documentation at the following URL:
https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/so3.html#so3_exp_map
"""


from typing import Tuple
import torch
import math

DEFAULT_ACOS_BOUND: float = 1.0 - 1e-4


def acos_linear_extrapolation(
x: torch.Tensor,
bounds: Tuple[float, float] = (-DEFAULT_ACOS_BOUND, DEFAULT_ACOS_BOUND),
) -> torch.Tensor:
lower_bound, upper_bound = bounds

if lower_bound > upper_bound:
raise ValueError("lower bound has to be smaller or equal to upper bound.")

if lower_bound <= -1.0 or upper_bound >= 1.0:
raise ValueError("Both lower bound and upper bound have to be within (-1, 1).")

# init an empty tensor and define the domain sets
acos_extrap = torch.empty_like(x)
x_upper = x >= upper_bound
x_lower = x <= lower_bound
x_mid = (~x_upper) & (~x_lower)

# acos calculation for upper_bound < x < lower_bound
acos_extrap[x_mid] = torch.acos(x[x_mid])
# the linear extrapolation for x >= upper_bound
acos_extrap[x_upper] = _acos_linear_approximation(x[x_upper], upper_bound)
# the linear extrapolation for x <= lower_bound
acos_extrap[x_lower] = _acos_linear_approximation(x[x_lower], lower_bound)

return acos_extrap


def _acos_linear_approximation(x: torch.Tensor, x0: float) -> torch.Tensor:
return (x - x0) * _dacos_dx(x0) + math.acos(x0)


def _dacos_dx(x: float) -> float:
return (-1.0) / math.sqrt(1.0 - x * x)


def hat(v: torch.Tensor) -> torch.Tensor:
N, dim = v.shape
if dim != 3:
raise ValueError("Input vectors have to be 3-dimensional.")

h = torch.zeros((N, 3, 3), dtype=v.dtype, device=v.device)

x, y, z = v.unbind(1)

h[:, 0, 1] = -z
h[:, 0, 2] = y
h[:, 1, 0] = z
h[:, 1, 2] = -x
h[:, 2, 0] = -y
h[:, 2, 1] = x

return h


def hat_inv(h: torch.Tensor) -> torch.Tensor:
N, dim1, dim2 = h.shape
if dim1 != 3 or dim2 != 3:
raise ValueError("Input has to be a batch of 3x3 Tensors.")

ss_diff = torch.abs(h + h.permute(0, 2, 1)).max()

HAT_INV_SKEW_SYMMETRIC_TOL = 1e-5
if float(ss_diff) > HAT_INV_SKEW_SYMMETRIC_TOL:
raise ValueError("One of input matrices is not skew-symmetric.")

x = h[:, 2, 1]
y = h[:, 0, 2]
z = h[:, 1, 0]

v = torch.stack((x, y, z), dim=1)

return v


def so3_rotation_angle(
R: torch.Tensor,
eps: float = 1e-4,
cos_angle: bool = False,
cos_bound: float = 1e-4,
) -> torch.Tensor:
N, dim1, dim2 = R.shape
if dim1 != 3 or dim2 != 3:
raise ValueError("Input has to be a batch of 3x3 Tensors.")

rot_trace = R[:, 0, 0] + R[:, 1, 1] + R[:, 2, 2]

if ((rot_trace < -1.0 - eps) + (rot_trace > 3.0 + eps)).any():
raise ValueError("A matrix has trace outside valid range [-1-eps,3+eps].")

# phi ... rotation angle
phi_cos = (rot_trace - 1.0) * 0.5

if cos_angle:
return phi_cos
else:
if cos_bound > 0.0:
bound = 1.0 - cos_bound
return acos_linear_extrapolation(phi_cos, (-bound, bound))
else:
return torch.acos(phi_cos)


def _so3_exp_map(
log_rot: torch.Tensor, eps: float = 0.0001
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
_, dim = log_rot.shape
if dim != 3:
raise ValueError("Input tensor shape has to be Nx3.")

nrms = (log_rot * log_rot).sum(1)
# phis ... rotation angles
rot_angles = torch.clamp(nrms, eps).sqrt()
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
rot_angles_inv = 1.0 / rot_angles
fac1 = rot_angles_inv * rot_angles.sin()
fac2 = rot_angles_inv * rot_angles_inv * (1.0 - rot_angles.cos())
skews = hat(log_rot)
skews_square = torch.bmm(skews, skews)

R = (
fac1[:, None, None] * skews
# pyre-fixme[16]: `float` has no attribute `__getitem__`.
+ fac2[:, None, None] * skews_square
+ torch.eye(3, dtype=log_rot.dtype, device=log_rot.device)[None]
)

return R, rot_angles, skews, skews_square


def so3_exp_map(log_rot: torch.Tensor, eps: float = 0.0001) -> torch.Tensor:
return _so3_exp_map(log_rot, eps=eps)[0]


def so3_log_map(
R: torch.Tensor, eps: float = 0.0001, cos_bound: float = 1e-4
) -> torch.Tensor:
N, dim1, dim2 = R.shape
if dim1 != 3 or dim2 != 3:
raise ValueError("Input has to be a batch of 3x3 Tensors.")

phi = so3_rotation_angle(R, cos_bound=cos_bound, eps=eps)

phi_sin = torch.sin(phi)

# We want to avoid a tiny denominator of phi_factor = phi / (2.0 * phi_sin).
# Hence, for phi_sin.abs() <= 0.5 * eps, we approximate phi_factor with
# 2nd order Taylor expansion: phi_factor = 0.5 + (1.0 / 12) * phi**2
phi_factor = torch.empty_like(phi)
ok_denom = phi_sin.abs() > (0.5 * eps)
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
phi_factor[~ok_denom] = 0.5 + (phi[~ok_denom] ** 2) * (1.0 / 12)
phi_factor[ok_denom] = phi[ok_denom] / (2.0 * phi_sin[ok_denom])

log_rot_hat = phi_factor[:, None, None] * (R - R.permute(0, 2, 1))

log_rot = hat_inv(log_rot_hat)

return log_rot


def slerp(axisangle_left, axisangle_right, t):
"""Spherical linear interpolation."""
# https://en.wikipedia.org/wiki/Slerp
# t: (time - timeleft / (timeright - timeleft)) (0, 1)
assert (
axisangle_left.shape == axisangle_right.shape
), "axisangle_left and axisangle_right must have the same shape"
assert (
axisangle_left.shape[-1] == 3
), "axisangle_left and axisangle_right must be axis-angle representations"
assert (
t.shape[:-1] == axisangle_left.shape[:-1]
), "t must have the same shape as axisangle_left and axisangle_right"

main_shape = axisangle_left.shape[:-1]
axisangle_left = axisangle_left.reshape(-1, 3)
axisangle_right = axisangle_right.reshape(-1, 3)
t = t.reshape(-1, 1)
delta_rotation = so3_exp_map(
so3_log_map(so3_exp_map(-axisangle_left) @ so3_exp_map(axisangle_right)) * t
)

return so3_log_map(so3_exp_map(axisangle_left) @ delta_rotation).reshape(
*main_shape, 3
)


def slerp_interpolate(motion, new_len):
motion_len, n_joints, axisangle_dims = motion.shape

new_t = torch.linspace(0, 1, new_len, device=motion.device)
timeline_idx = new_t * (motion_len - 1)
timeline_idx_left = torch.floor(timeline_idx).long()
timeline_idx_right = torch.clamp(timeline_idx_left + 1, max=motion_len - 1)

motion_left = torch.gather(
motion, 0, timeline_idx_left[:, None, None].expand(-1, n_joints, axisangle_dims)
)
motion_right = torch.gather(
motion,
0,
timeline_idx_right[:, None, None].expand(-1, n_joints, axisangle_dims),
)
delta_t = timeline_idx - timeline_idx_left.float()

new_motion = slerp(
motion_left,
motion_right,
delta_t[:, None, None].expand(-1, n_joints, -1),
)
return new_motion

0 comments on commit cfa4760

Please sign in to comment.