Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

changed '@D' notation to '@Dp' #1439

Merged
merged 1 commit into from
Apr 2, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion theories/Basics/Notations.v
Original file line number Diff line number Diff line change
@@ -172,7 +172,7 @@ Reserved Notation "s ^v$" (at level 20).
Reserved Infix "@@h" (at level 30).
Reserved Infix "@@v" (at level 30).
Reserved Infix "@lr" (at level 30).
Reserved Notation "x '@D' y" (at level 20).
Reserved Notation "x '@Dp' y" (at level 20).
Reserved Notation "x '@Dr' y" (at level 20).
Reserved Notation "x '@Dl' y" (at level 20).
Reserved Notation "x '^D'" (at level 3).
18 changes: 9 additions & 9 deletions theories/Cubical/DPath.v
Original file line number Diff line number Diff line change
@@ -109,7 +109,7 @@ Proof.
exact concat.
Defined.

Notation "x '@D' y" := (dp_concat x y) : dpath_scope.
Notation "x '@Dp' y" := (dp_concat x y) : dpath_scope.

(* Concatenation of dependent paths with non-dependent paths *)
Definition dp_concat_r {A} {P : A -> Type} {a0 a1}
@@ -143,7 +143,7 @@ Notation "x '^D'" := (dp_inverse x) : dpath_scope.
(* dp_apD distributes over concatenation *)
Definition dp_apD_pp (A : Type) (P : A -> Type) (f : forall a, P a)
{a0 a1 a2 : A} (p : a0 = a1) (q : a1 = a2)
: dp_apD f (p @ q) = (dp_apD f p) @D (dp_apD f q).
: dp_apD f (p @ q) = (dp_apD f p) @Dp (dp_apD f q).
Proof.
by destruct p, q.
Defined.
@@ -158,7 +158,7 @@ Defined.
(* dp_const preserves concatenation *)
Definition dp_const_pp {A B : Type} {a0 a1 a2 : A}
{p : a0 = a1} {q : a1 = a2} {x y z : B} (r : x = y) (s : y = z)
: dp_const (p:=p @ q) (r @ s) = (dp_const (p:=p) r) @D (dp_const (p:=q) s).
: dp_const (p:=p @ q) (r @ s) = (dp_const (p:=p) r) @Dp (dp_const (p:=q) s).
Proof.
by destruct p,q.
Defined.
@@ -169,28 +169,28 @@ Section DGroupoid.
{b0 : P a0} {b1 : P a1} {dp : DPath P p b0 b1}.

Definition dp_concat_p1
: DPath (fun t => DPath _ t _ _) (concat_p1 _) (dp @D 1) dp.
: DPath (fun t => DPath _ t _ _) (concat_p1 _) (dp @Dp 1) dp.
Proof.
destruct p.
apply concat_p1.
Defined.

Definition dp_concat_1p
: DPath (fun t => DPath _ t _ _) (concat_1p _) (1 @D dp) dp.
: DPath (fun t => DPath _ t _ _) (concat_1p _) (1 @Dp dp) dp.
Proof.
destruct p.
apply concat_1p.
Defined.

Definition dp_concat_Vp
: DPath (fun t => DPath _ t _ _) (concat_Vp _) (dp^D @D dp) 1.
: DPath (fun t => DPath _ t _ _) (concat_Vp _) (dp^D @Dp dp) 1.
Proof.
destruct p.
apply concat_Vp.
Defined.

Definition dp_concat_pV
: DPath (fun t => DPath _ t _ _) (concat_pV _) (dp @D dp^D) 1.
: DPath (fun t => DPath _ t _ _) (concat_pV _) (dp @Dp dp^D) 1.
Proof.
destruct p.
apply concat_pV.
@@ -204,15 +204,15 @@ Section DGroupoid.

Definition dp_concat_pp_p
: DPath (fun t => DPath _ t _ _) (concat_pp_p _ _ _)
((dp @D dq) @D dr) (dp @D (dq @D dr)).
((dp @Dp dq) @Dp dr) (dp @Dp (dq @Dp dr)).
Proof.
destruct p, q, r.
apply concat_pp_p.
Defined.

Definition dp_concat_p_pp
: DPath (fun t => DPath _ t _ _) (concat_p_pp _ _ _)
(dp @D (dq @D dr)) ((dp @D dq) @D dr).
(dp @Dp (dq @Dp dr)) ((dp @Dp dq) @Dp dr).
Proof.
destruct p, q, r.
apply concat_p_pp.
2 changes: 1 addition & 1 deletion theories/Cubical/DPathSquare.v
Original file line number Diff line number Diff line change
@@ -56,7 +56,7 @@ Definition equiv_ds_dpath {A} (P : A -> Type) {a00 a10 a01 a11 : A}
(s : px0 @ p1x = p0x @ px1) {b00 b10 b01 b11}
{qx0 : DPath P px0 b00 b10} {qx1 : DPath P px1 b01 b11}
{q0x : DPath P p0x b00 b01} {q1x : DPath P p1x b10 b11}
: DPath (fun p => DPath P p b00 b11) s (qx0 @D q1x) (q0x @D qx1)
: DPath (fun p => DPath P p b00 b11) s (qx0 @Dp q1x) (q0x @Dp qx1)
<~> DPathSquare P (sq_path s) qx0 qx1 q0x q1x.
Proof.
set (s' := sq_path s).
4 changes: 2 additions & 2 deletions theories/Homotopy/ClassifyingSpace.v
Original file line number Diff line number Diff line change
@@ -59,7 +59,7 @@ Module Export ClassifyingSpace.
(bbase' : P bbase)
(bloop' : forall x, DPath P (bloop x) bbase' bbase')
(bloop_pp' : forall x y, DPathSquare P (sq_G1 (bloop_pp x y))
(bloop' (x * y)) ((bloop' x) @D (bloop' y)) 1 1) x : P x
(bloop' (x * y)) ((bloop' x) @Dp (bloop' y)) 1 1) x : P x
:= match x with
bbase => (fun _ _ => bbase')
end bloop' bloop_pp'.
@@ -70,7 +70,7 @@ Module Export ClassifyingSpace.
`{forall x, IsTrunc 1 (P x)}
(bbase' : P bbase) (bloop' : forall x, DPath P (bloop x) bbase' bbase')
(bloop_pp' : forall x y, DPathSquare P (sq_G1 (bloop_pp x y))
(bloop' (x * y)) ((bloop' x) @D (bloop' y)) 1 1) (x : G)
(bloop' (x * y)) ((bloop' x) @Dp (bloop' y)) 1 1) (x : G)
: dp_apD (ClassifyingSpace_ind P bbase' bloop' bloop_pp') (bloop x)
= bloop' x.
Proof. Admitted.
6 changes: 3 additions & 3 deletions theories/Homotopy/Smash.v
Original file line number Diff line number Diff line change
@@ -118,7 +118,7 @@ Section Smash.
(Pgl : forall a, DPath P (gluel a) (Psm a pt) Pl)
(Pgr : forall b, DPath P (gluer b) (Psm pt b) Pr) (a b : X)
: dp_apD (Smash_ind Psm Pl Pr Pgl Pgr) (gluel' a b)
= (Pgl a) @D ((Pgl b)^D).
= (Pgl a) @Dp ((Pgl b)^D).
Proof.
unfold gluel'.
rewrite dp_apD_pp, dp_apD_V.
@@ -130,7 +130,7 @@ Section Smash.
(Pgl : forall a, DPath P (gluel a) (Psm a pt) Pl)
(Pgr : forall b, DPath P (gluer b) (Psm pt b) Pr) (a b : Y)
: dp_apD (Smash_ind Psm Pl Pr Pgl Pgr) (gluer' a b)
= (Pgr a) @D ((Pgr b)^D).
= (Pgr a) @Dp ((Pgr b)^D).
Proof.
unfold gluer'.
rewrite dp_apD_pp, dp_apD_V.
@@ -142,7 +142,7 @@ Section Smash.
(Pgl : forall a, DPath P (gluel a) (Psm a pt) Pl)
(Pgr : forall b, DPath P (gluer b) (Psm pt b) Pr) (a : X) (b : Y)
: dp_apD (Smash_ind Psm Pl Pr Pgl Pgr) (glue a b)
= ((Pgl a) @D ((Pgl pt)^D)) @D ((Pgr pt) @D ((Pgr b)^D)).
= ((Pgl a) @Dp ((Pgl pt)^D)) @Dp ((Pgr pt) @Dp ((Pgr b)^D)).
Proof.
by rewrite dp_apD_pp, Smash_ind_beta_gluel', Smash_ind_beta_gluer'.
Qed.