Skip to content

Green-Phys/green-grids

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GitHub license GitHub license

grids codecov

Sparse grid utilities for IR and Chebyshev representations

Essential contents for a temperature-independent sparse grid

  • stats: Bose or Fermi statistics.
  • xgrid: Real space grid points in $x \in (-1, 1)$.
  • ngrid: Frequency space grid points in Matsubara indices $n$, such that $\omega_n = (2n+\zeta)\pi/\beta$.
  • wgrid: Frequency space grid points assuming $\beta=1$.
  • uxl: Transformation matrix from the basis representation l to real space grid points x.
  • ulx: Inverse of uxl.
  • u1l_pos: Basis representation for $x=+1$.
  • u1l_neg: Basis representation for $x=-1$.
  • uwl: Transformation matrix from the basis representation l to frequency space grid points w.
  • ulw: Inverse of uwl.
  • metadata: Group for representation-depend information, for example:
    • For Chebyshev: ncoeff for maximum number of coefficients.
    • For IR: lambda for dimensionless cutoff $\Lambda$, ncoeff for maximum number of coefficients.

Directory structure

  • python/sparse_grid/: python code for generating and parsing sparse grid data.
    • python/sparse_grid/ir/: IR-specific code.
    • python/sparse_grid/chebyshev/: Chebyshev-specific code.
    • python/sparse_grid/repn.py: Common module interface for representations.
    • python/generate.py: Script for generating HDF5 archives.
  • c++/: C++ interface for loading and representing sparse grid data.
    • green/grids/: Public headers.
  • data/: Pre-generated data files.
  • examples: Usage examples.

Dependencies

  • Python:
    • Hiroshi's sparse_ir
    • numpy, scipy, h5py, mpmath, ...
  • C++:
    • Green/h5pp: for compatibility with h5py
    • Green/ndarrays: for compatibility with numpy.ndarray
    • Green/params: for comandline parameters

Acknowledgements

This work is supported by National Science Foundation under the award CSSI-2310582