Skip to content

πŸ”¬ mtphandler is Python package for processing, enriching, and converting microtiter plate data into standardized EnzymeML time-course data, ready for data science

License

Notifications You must be signed in to change notification settings

FAIRChemistry/MTPHandler

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

MTPHandler

Documentation Tests PyPI version

ℹ️ Overview

mtphandler is a tool for managing and processing data from microtiter plates. It allows direct reading of output files from various photometers, enabling low-friction data handling. The tool facilitates a workflow for importing raw data, assigning molecules with their respective concentrations and units to wells.

Wells for creating standard curves can be automatically detected and fitted to calibration models, which are then used to calculate the concentration of unknown samples. Finally, the plate data can be transformed into time-course concentration data in the EnzymeML format, enabling downstream analysis.

graph LR
  AP[πŸ§ͺ Plate Reader] --> A[πŸ“„ Output File];
  style AP fill:transparent,stroke:#000,stroke-width:2px;
  A -->|read| B{mtphandler}
  style B stroke-width:4px
  subgraph in Jupyter Notebook
    subgraph with mtphandler
        B --> B1[Enrich Data with Metadata]
        B1 --> B2[Blank Data]
        B2 --> B3[Create and Apply Calibration Models]
        B3 --> B

        style B1 stroke-dasharray: 5, 5
        style B2 stroke-dasharray: 5, 5
        style B3 stroke-dasharray: 5, 5
    end
  B -->|convert| G[πŸ“„ EnzymeML time-course Data]
  G <-.-> H[πŸ“Š Data Science and Insights]

  style H stroke-dasharray: 5, 5,fill:transparent
  end
  G -->|export| I[πŸ“„ EnzymeML File]
Loading

⭐ Key Features

  • πŸš€ Parser Functions
    Features a custom parser for various plate readers, enabling low-friction data processing.

  • 🌟 Enrich measured data with metadata
    Assigns molecules with their respective concentration and unit to wells, capturing the experimental context of each well.

  • βš™οΈ Adaptive Data Processing
    Automatically adapts and blanks measurement data based on initial conditions set for each well. Automatically classifies wells without protein as calibration data and those with protein as reaction data.

  • 🌐 FAIR Data
    Maps well data to the standardized EnzymeML format, yielding time-course data with metadata for further analysis.

πŸ”¬ Supported Plate Readers

The following table lists currently supported plate reader output formats:

Manufacturer Model File Format
Agilent BioTek Epoch 2 xlsx
Molecular Devices SpectraMax 190 txt
Tekan Magellan (processing software) xlsx
Tekan Spark xlsx
Thermo Scientific Multiskan SkyHigh xlsx
Thermo Scientific Multiskan Spectrum 1500 txt

πŸ“¦ Installation

Install mtphandler via PyPI:

pip install mtphandler # 🚧 not released yet

or from source:

pip install git+https://github.com/FAIRChemistry/MTPHandler.git

Please refer to the documentation for more information on how to use the package.

About

πŸ”¬ mtphandler is Python package for processing, enriching, and converting microtiter plate data into standardized EnzymeML time-course data, ready for data science

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages