Skip to content

Commit

Permalink
Merge pull request #88 from EthanJamesLew/feature/sw-edmd
Browse files Browse the repository at this point in the history
Feature: State Weighted eDMD (SW-eDMD)
  • Loading branch information
EthanJamesLew authored Apr 26, 2024
2 parents 8303d95 + 6a4b37b commit 77de218
Show file tree
Hide file tree
Showing 12 changed files with 393 additions and 102 deletions.
4 changes: 2 additions & 2 deletions autokoopman/autokoopman.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

import numpy as np

import autokoopman.core.observables as kobs
import autokoopman.observable as kobs
from autokoopman.core.trajectory import (
TrajectoriesData,
UniformTimeTrajectoriesData,
Expand All @@ -24,7 +24,7 @@
from autokoopman.tuner.gridsearch import GridSearchTuner
from autokoopman.tuner.montecarlo import MonteCarloTuner
from autokoopman.tuner.bayesianopt import BayesianOptTuner
from autokoopman.core.observables import KoopmanObservable
from autokoopman.observable.observables import KoopmanObservable
from autokoopman.core.format import hide_prints

__all__ = ["auto_koopman"]
Expand Down
76 changes: 58 additions & 18 deletions autokoopman/estimator/koopman.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,11 @@ def dmdc(X, Xp, U, r):
U, Sigma, V = U[:, :r], np.diag(Sigma)[:r, :r], V.conj().T[:, :r]

# get the transformation
Atilde = Yp @ V @ np.linalg.inv(Sigma) @ U.conj().T
try:
Atilde = Yp @ V @ np.linalg.inv(Sigma) @ U.conj().T
except:
Atilde = Yp @ V @ np.linalg.pinv(Sigma) @ U.conj().T

return Atilde[:, :state_size], Atilde[:, state_size:]


Expand All @@ -48,33 +52,69 @@ def wdmdc(X, Xp, U, r, W):
U, Sigma, V = U[:, :r], np.diag(Sigma)[:r, :r], V.conj().T[:, :r]

# get the transformation
Atilde = Yp @ V @ np.linalg.inv(Sigma) @ U.conj().T
# get the transformation
try:
Atilde = Yp @ V @ np.linalg.inv(Sigma) @ U.conj().T
except:
Atilde = Yp @ V @ np.linalg.pinv(Sigma) @ U.conj().T
return Atilde[:, :state_size], Atilde[:, state_size:]


def swdmdc(X, Xp, U, r, Js, W):
"""State Weighted Dynamic Mode Decomposition with Control (wDMDC)"""
import cvxpy as cp
import warnings

assert len(W.shape) == 2, "weights must be 2D for snapshot x state"

if U is not None:
Y = np.hstack((X, U)).T
Y = np.hstack((X, U))
else:
Y = X.T
Yp = Xp.T

# compute observables weights from state weights
Wy = np.vstack([(np.abs(J) @ np.atleast_2d(w).T).T for J, w in zip(Js, W)])

# apply weights element-wise
Y, Yp = Wy.T * Y, Wy.T * Yp
state_size = Yp.shape[0]

# compute Atilde
U, Sigma, V = np.linalg.svd(Y, False)
U, Sigma, V = U[:, :r], np.diag(Sigma)[:r, :r], V.conj().T[:, :r]

Y = X
Yp = Xp
state_size = Yp.shape[1]

n_snap, n_obs = Yp.shape
n_inps = U.shape[1] if U is not None else 0
_, n_states = Js[0].shape

# so the objective isn't numerically unstable
sf = (1.0 / n_snap)

# check that rank is less than the number of observations
if r > n_obs:
warnings.warn("Rank must be less than the number of observations. Reducing rank to n_obs.")
r = n_obs

# koopman operator
# Variables for the low-rank approximation
K_U = cp.Variable((n_obs, r))
K_V = cp.Variable((r, n_obs + n_inps))

# SW-eDMD objective
weights_obj = np.vstack([(np.abs(J) @ w) for J, w in zip(Js, W)]).T
P = sf * cp.multiply(weights_obj, Yp.T - (K_U @ K_V) @ Y.T)
# add regularization
objective = cp.Minimize(cp.sum_squares(P) + 1E-4 * 1.0 / (n_obs**2) * cp.norm(K_U @ K_V, "fro"))

# unconstrained problem
constraints = None

# SW-eDMD problem
prob = cp.Problem(objective, constraints)

# solve for the SW-eDMD Koopman operator
try:
_ = prob.solve(solver=cp.CLARABEL)
#_ = prob.solve(solver=cp.ECOS)
if K_U.value is None or K_V.value is None:
raise Exception("SW-eDMD (cvxpy) Optimization failed to converge.")
except:
warnings.warn("SW-eDMD (cvxpy) Optimization failed to converge. Switching to unweighted DMDc.")
return dmdc(X, Xp, U, r)

# get the transformation
Atilde = Yp @ V @ np.linalg.inv(Sigma) @ U.conj().T
Atilde = K_U.value @ K_V.value
return Atilde[:, :state_size], Atilde[:, state_size:]


Expand Down
7 changes: 7 additions & 0 deletions autokoopman/observable/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
"""
Koopman Observables Module
"""

from .observables import *
from .rff import *
from .reweighted import *
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,6 @@
import numpy as np
import sympy as sp # type: ignore

from scipy.stats import cauchy, laplace


class KoopmanObservable(abc.ABC):
"""
Expand Down Expand Up @@ -163,51 +161,3 @@ def __init__(self, dimension, degree) -> None:

def obs_fcn(self, X: np.ndarray) -> np.ndarray:
return self.poly.transform(np.atleast_2d(X)).T


class RFFObservable(KoopmanObservable):
def __init__(self, dimension, num_features, gamma, metric="rbf"):
super(RFFObservable, self).__init__()
self.gamma = gamma
self.dimension = dimension
self.metric = metric
self.D = num_features
# Generate D iid samples from p(w)
if self.metric == "rbf":
self.w = np.sqrt(2 * self.gamma) * np.random.normal(
size=(self.D, self.dimension)
)
elif self.metric == "laplace":
self.w = cauchy.rvs(scale=self.gamma, size=(self.D, self.dimension))
# Generate D iid samples from Uniform(0,2*pi)
self.u = 2 * np.pi * np.random.rand(self.D)

def obs_fcn(self, X: np.ndarray) -> np.ndarray:
# modification...
if len(X.shape) == 1:
x = np.atleast_2d(X.flatten()).T
else:
x = X.T
w = self.w.T
u = self.u[np.newaxis, :].T
s = np.sqrt(2 / self.D)
Z = s * np.cos(x.T @ w + u.T)
return Z.T

def obs_grad(self, X: np.ndarray) -> np.ndarray:
if len(X.shape) == 1:
x = np.atleast_2d(X.flatten()).T
else:
x = X.T
x = np.atleast_2d(X.flatten()).T
w = self.w.T
u = self.u[np.newaxis, :].T
s = np.sqrt(2 / self.D)
# TODO: make this sparse?
Z = -s * np.diag(np.sin(u + w.T @ x).flatten()) @ w.T
return Z

def compute_kernel(self, X: np.ndarray) -> np.ndarray:
Z = self.transform(X)
K = Z.dot(Z.T)
return K
151 changes: 151 additions & 0 deletions autokoopman/observable/reweighted.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
from autokoopman.observable import SymbolicObservable, KoopmanObservable
import math
import numpy as np
import sympy as sp
from scipy.stats import cauchy, laplace
from scipy.optimize import nnls


def make_gaussian_kernel(sigma=1.0):
"""the baseline"""
def kernel(x, xp):
return np.exp(-np.linalg.norm(x-xp)**2.0 / (2.0*sigma**2.0))
return kernel


def rff_reweighted_map(n, X, Y, wx, wy, sigma=1.0):
"""build a RFF explicit feature map"""
assert len(X) == len(Y)
R = n
D = X.shape[1]
N = len(X)
W = np.random.normal(loc=0, scale=(1.0/np.sqrt(sigma)), size=(R, D))
b = np.random.uniform(-np.pi, np.pi, size = R)

# get ground truth kernel for training
kernel = make_gaussian_kernel(sigma)

# solve NNLS problem
M = np.zeros((N, R))
bo = np.zeros((N,))
for jdx, (xi, yi, wxi, wyi) in enumerate(zip(X, Y, wx, wy)):
wi = np.sum(wxi) * np.sum(wyi)
k = wi * kernel(xi, yi)
if np.isclose(np.abs(wi), 0.0):
continue
bo[jdx] = k
for idx, (omegai, bi) in enumerate(zip(W, b)):
M[jdx, idx] = wi * np.cos(np.dot(omegai, xi) + bi) * np.cos(np.dot(omegai, yi) + bi)

a, _ = nnls(M, bo, maxiter=1000)

# get new values
new_idxs = (np.abs(a) > 3E-5)
W = W[new_idxs]
b = b[new_idxs]
a = a[new_idxs]

return a, W, b


def subsampled_dense_grid(d, D, gamma, deg=8):
"""sparse grid gaussian quadrature"""
points, weights = np.polynomial.hermite.hermgauss(deg)
points *= 2 * math.sqrt(gamma)
weights /= math.sqrt(math.pi)
# Now @weights must sum to 1.0, as the kernel value at 0 is 1.0
subsampled_points = np.random.choice(points, size=(D, d), replace=True, p=weights)
subsampled_weights = np.ones(D) / math.sqrt(D)
return subsampled_points, subsampled_weights


def dense_grid(d, D, gamma, deg=8):
"""dense grid gaussian quadrature"""
points, weights = np.polynomial.hermite.hermgauss(deg)
points *= 2 * math.sqrt(gamma)
weights /= math.sqrt(math.pi)
points = np.atleast_2d(points).T
return points, weights


def sparse_grid_map(n, d, sigma=1.0):
"""sparse GQ explicit map"""
d, D = d, n
gamma = 1/(2*sigma*sigma)
points, weights = subsampled_dense_grid(d, D, gamma=gamma)
def inner(x):
prod = x @ points.T
return np.hstack((weights * np.cos(prod), weights * np.sin(prod)))
return inner


def dense_grid_map(n, d, sigma=1.0):
"""dense GQ explicit map"""
d, D = d, n
gamma = 1/(2*sigma*sigma)
points, weights = dense_grid(d, D, gamma=gamma)
def inner(x):
prod = x @ points.T
return np.hstack((weights * np.cos(prod), weights * np.sin(prod)))
return inner


def quad_reweighted_map(n, X, Y, wx, wy, sigma=1.0):
"""build a RFF explicit feature map"""
assert len(X) == len(Y)
R = int(n / 2.0)
D = X.shape[1]
N = len(X)
W, a = subsampled_dense_grid(D, R, gamma=1/(2*sigma*sigma))
#W = np.random.normal(loc=0, scale=(1.0/np.sqrt(sigma)), size=(R, D))
b = np.random.uniform(-np.pi, np.pi, size = R)
#print(X.shape, W.shape)
#b = np.arccos(-np.sqrt(np.cos(2*X.T.dot(W)) + 1)/np.sqrt(2.0))
#print(b)

# get ground truth kernel for training
kernel = make_gaussian_kernel(sigma)

# solve NNLS problem
M = np.zeros((N, R))
bo = np.zeros((N,))
for jdx, (xi, yi, wxi, wyi) in enumerate(zip(X, Y, wx, wy)):
k = kernel(xi, yi)
bo[jdx] = k
for idx, (omegai, ai, bi) in enumerate(zip(W, a, b)):
M[jdx, idx] = np.cos(np.dot(omegai, xi - yi))

a, _ = nnls(M, bo, maxiter=1000)

# get new values
new_idxs = (np.abs(a) > 1E-7)
W = W[new_idxs]
b = b[new_idxs]
a = a[new_idxs]

return a, W, b


class ReweightedRFFObservable(SymbolicObservable):
def __init__(self, dimension, num_features, gamma, X, Y, wx, wy, feat_type='rff'):
self.dimension, self.num_features = dimension, num_features
n = num_features
if feat_type == 'quad':
self.a, self.W, self.b = quad_reweighted_map(n, X, Y, wx, wy, np.sqrt(1/(2*gamma)))
elif feat_type == 'rff':
self.a, self.W, self.b = rff_reweighted_map(n, X, Y, wx, wy, np.sqrt(1/(2*gamma)))
else:
raise ValueError('feat_type must be quad or rff')

# make sympy variables for each of the state dimensions
self.variables = [f'x{i}' for i in range(self.dimension)]
self._observables = sp.symbols(self.variables)
X = sp.Matrix(self._observables)

# build observables sympy expressions from self.weights from self.weights, x.T @ points
self.expressions = []
for ai, wi, bi in zip(self.a, self.W, self.b):
self.expressions.append(np.sqrt(ai) * sp.cos(X.dot(wi)))
self.expressions.append(np.sqrt(ai) * sp.sin(X.dot(wi)))

super(ReweightedRFFObservable, self).__init__(self.variables, self.expressions)
52 changes: 52 additions & 0 deletions autokoopman/observable/rff.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
import numpy as np
from scipy.stats import cauchy, laplace

from .observables import KoopmanObservable


class RFFObservable(KoopmanObservable):
def __init__(self, dimension, num_features, gamma, metric="rbf"):
super(RFFObservable, self).__init__()
self.gamma = gamma
self.dimension = dimension
self.metric = metric
self.D = num_features
# Generate D iid samples from p(w)
if self.metric == "rbf":
self.w = np.sqrt(2 * self.gamma) * np.random.normal(
size=(self.D, self.dimension)
)
elif self.metric == "laplace":
self.w = cauchy.rvs(scale=self.gamma, size=(self.D, self.dimension))
# Generate D iid samples from Uniform(0,2*pi)
self.u = 2 * np.pi * np.random.rand(self.D)

def obs_fcn(self, X: np.ndarray) -> np.ndarray:
# modification...
if len(X.shape) == 1:
x = np.atleast_2d(X.flatten()).T
else:
x = X.T
w = self.w.T
u = self.u[np.newaxis, :].T
s = np.sqrt(2 / self.D)
Z = s * np.cos(x.T @ w + u.T)
return Z.T

def obs_grad(self, X: np.ndarray) -> np.ndarray:
if len(X.shape) == 1:
x = np.atleast_2d(X.flatten()).T
else:
x = X.T
x = np.atleast_2d(X.flatten()).T
w = self.w.T
u = self.u[np.newaxis, :].T
s = np.sqrt(2 / self.D)
# TODO: make this sparse?
Z = -s * np.diag(np.sin(u + w.T @ x).flatten()) @ w.T
return Z

def compute_kernel(self, X: np.ndarray) -> np.ndarray:
Z = self.transform(X)
K = Z.dot(Z.T)
return K
Loading

0 comments on commit 77de218

Please sign in to comment.