Skip to content

Commit

Permalink
Update 图3-9-3 单篇文章的词云图.R
Browse files Browse the repository at this point in the history
  • Loading branch information
EasyChart authored Feb 26, 2020
1 parent 1f78ba6 commit e6a0ca3
Showing 1 changed file with 29 additions and 23 deletions.
52 changes: 29 additions & 23 deletions 第3章_类别比较型图表/图3-9-3 单篇文章的词云图.R
Original file line number Diff line number Diff line change
@@ -1,41 +1,47 @@
#EasyCharts团队出品,

#EasyShu团队出品,更多文章请关注微信公众号【EasyShu】
#如有问题修正与深入学习,可联系微信:EasyCharts

library(tm)
library(wordcloud)

Paper1<-paste(scan("Paper1.txt", what = character(0),sep = ""), collapse = " ")
Paper2<-paste(scan("Paper2.txt", what = character(0),sep = ""), collapse = " ")

Paper1<-paste(scan("Paper1.txt", what = character(0),sep = ""), collapse = " ") #读入TXT 文档1
Paper2<-paste(scan("Paper2.txt", what = character(0),sep = ""), collapse = " ") #读入TXT 文档2
tmpText<- data.frame(c(Paper1, Paper2),row.names=c("Text1","Text2"))

df_title <- data.frame(doc_id=row.names(tmpText),
text=tmpText$c.Paper1..Paper2.)

ds <- DataframeSource(df_title)
corp = Corpus(ds)
corp = tm_map(corp,removePunctuation)
corp = tm_map(corp,PlainTextDocument)
corp = tm_map(corp,removeNumbers)
corp = tm_map(corp, function(x){removeWords(x,stopwords())})

#创建一个数据框格式的数据源,首列是文档id(doc_id),第二列是文档内容
corp <- VCorpus(ds)
#加载文档集中的文本并生成语料库文件
corp<- tm_map(corp,removePunctuation) #清除语料库内的标点符号
corp <- tm_map(corp,PlainTextDocument) #转换为纯文本
corp <- tm_map(corp,removeNumbers) #清除数字符号
corp <- tm_map(corp, function(x){removeWords(x,stopwords())}) #过滤停止词库
term.matrix <- TermDocumentMatrix(corp)
term.matrix <- as.matrix(term.matrix)
#利用TermDocumentMatrix()函数将处理后的语料库进行断字处理,生成词频权重矩阵

term.matrix <- as.matrix(term.matrix) #频率
colnames(term.matrix) <- c("Paper1","paper2")
df<-data.frame(term.matrix)
write.csv(df,'term_matrix.csv') #导出两篇文章的频率分析结果

#---------------------------------------导入数据------------------------------------------
df<-read.csv('term_matrix.csv',header=TRUE,row.names=1)

#------------------------------------------------------------------------------------------------------
comparison.cloud(term.matrix, max.words=300, random.order=FALSE, rot.per=.15, c(4,0.4), title.size=1.4)
#-------------------------------------单篇文章数据的展示-----------------------------------------------------------------
#Colors<-colorRampPalette(rev(brewer.pal(9,'RdBu')))(length(df$Paper1>10))
wordcloud(row.names(df) , df$Paper1 , min.freq=10,col=brewer.pal(8, "Dark2"), rot.per=0.3 )


#----------------------------------------两篇文章数据的对比-------------------------------------------------------------
comparison.cloud(df, max.words=300, random.order=FALSE, rot.per=.15, c(4,0.4), title.size=1.4)

comparison.cloud(term.matrix,max.words=300,random.order=FALSE,colors=c("#00B2FF", "red"))
commonality.cloud(term.matrix,max.words=100,random.order=FALSE,color="#E7298A")
comparison.cloud(df,max.words=300,random.order=FALSE,colors=c("#00B2FF", "red"))
commonality.cloud(df,max.words=100,random.order=FALSE,color="#E7298A")


# comparison cloud
comparison.cloud(term.matrix, random.order=FALSE,
comparison.cloud(df, random.order=FALSE,
colors = c("#00B2FF", "red", "#FF0099", "#6600CC"),
title.size=1.5, max.words=500)

#------------------------------------------------------------------------------------------------------
df<-data.frame(term.matrix)
#Colors<-colorRampPalette(rev(brewer.pal(9,'RdBu')))(length(df$Paper1>10))
wordcloud(row.names(df) , df$Paper1 , min.freq=10,col=brewer.pal(8, "Dark2"), rot.per=0.3 )

0 comments on commit e6a0ca3

Please sign in to comment.