This repository systematically organizes popular datasets for research and benchmarking, with a primary focus on Anomaly Detection in the industrial vision domain.
- "The main focus is on images from automotive manufacturing processes."
- Scope
- Quick Contribution Guide
- Tag/Notation Rules
- Domain-specific Catalog
- Related Repos/Resources
- License
- Make sure the dataset is publicly available (download link or application process).
- Add a row to the appropriate section using the table template below.
- Prefer official pages/author distribution sites for links whenever possible.
- Indicate the license/usage terms if specified.
Table row template for adding new datasets (copy and fill in the values):
| Name | Domain | Modality | Defect Type | Task | Annotation | Total | Normal | Defect | Representative Model | Image AUC | Image AP | Pixel AUC | Pixel AP | Pixel PRO | Params (M) | Input Size | Batch Size | VRAM (GB) | Inference (FPS) | Train time/epoch | Hardware | Precision Type | Year | License | Link | Paper/Page |
| ---- | ------ | -------- | ----------- | ---- | ---------- | ----- | ------ | ------ | -------------------- | --------- | -------- | --------- | -------- | --------- | ---------- | ---------- | ---------- | --------- | --------------- | ---------------- | -------- | -------------- | ---- | ------- | ---- | ---------- |
| - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |Field Guide :
- Name: Official dataset name
- Domain: Manufacturing process/domain (Press, Body/Welding, Painting, Assembly, etc.)
- Modality: RGB, Grayscale, Video, Depth, 3D, Multi, etc.
- Defect Type: Surface/structural categories (e.g., scratch, LP, PO, CR)
- Task: AD(img), AD(pixel), Seg, Cls, Det (comma-separated if multiple)
- Annotation: Img-level, Pix-level, Box-level (available supervision granularity)
- Scale: Total/Normal/Defect image counts (use official numbers if available)
- Representative Model: Best baseline/representative model (e.g., PatchCore (CNN), ResNet50, EfficientAD-M)
- Image AUC / Image AP: Requires image-level GT labels; report per protocol (per-class vs overall)
- Pixel AUC / Pixel AP / Pixel PRO: Requires pixel-level GT masks; PRO = area under per-region overlap curve
- Params (M): Number of parameters in millions
- Input Size: Evaluation input resolution (e.g., 256×256)
- Batch Size: Evaluation batch size for the reported numbers
- VRAM (GB): Peak GPU memory during inference (specify context if training)
- Inference (FPS): Single-GPU throughput; specify input size and batch size
- Train time/epoch: Time per epoch; specify dataset scope and epochs
- Hardware: GPU model (e.g., A6000, 4090), CPU if relevant
- Precision Type: FP32, FP16, Mixed (FP16/32)
- Year: Publication/release year
- License: MIT, CC-BY, research use, restricted, etc.
- Link: Official distribution page preferred
- Paper/Page: Official paper or documentation link
- Modality: [RGB], [Gray], [Video], [Depth], [3D], [Multi]
- Task: [AD(img)] image-level anomaly detection, [AD(pixel)] pixel-level anomaly localization, [Seg], [Cls], [Det]
- Annotation: [Img-level], [Pix-level], [Box-level]
- Precision Type: [FP32], [FP16], [Mixed(FP16/32)]
- Units/Conventions:
- Params in millions (M), VRAM in GB, FPS as single-GPU throughput
- Input Size as WxH (e.g., 256×256), clearly state batch size
- Reporting protocol (must state in Notes or README):
- Per-class vs overall averaging, image-level vs pixel-level metrics
- Dataset split (official/paper split), input resolution, post-processing
- Link priority: Official site > Official GitHub/author page > Public mirror
| Name | Domain | Modality | Defect Type | Task | Annotation | Total | Normal | Defect | Representative Model | Image AUC | Image AP | Pixel AUC | Pixel AP | Pixel PRO | Params (M) | Input Size | Batch Size | VRAM (GB) | Inference (FPS) | Train time/epoch | Hardware | Precision Type | Year | License | Link | Paper/Page |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| NEU-CLS | Surface/Metal | Gray | RS, Pa, Cr, PS, In, Sc | Cls | Img-level | 1,800 | 0 | 1,800 | - | - | - | - | - | - | - | 200×200 | - | - | - | - | - | - | 2013 | Citation required | Official page | Applied Surface Science 2013 |
| Name | Domain | Modality | Defect Type | Task | Annotation | Total | Normal | Defect | Representative Model | Image AUC | Image AP | Pixel AUC | Pixel AP | Pixel PRO | Params (M) | Input Size | Batch Size | VRAM (GB) | Inference (FPS) | Train time/epoch | Hardware | Precision Type | Year | License | Link | Paper/Page |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RIAWELC | Surface/metal | Gray | LP, PO, CR | AD, Cls | Img-level | 24,407 | 6,000 | 18,707 | - | - | - | - | - | - | - | 227×227 | - | - | - | - | - | - | 2022 | citation required | GitHub | [1] ICMECE 2022 [2] Manufacturing Letters (Elsevier) |
| Name | Domain | Modality | Defect Type | Task | Annotation | Total | Normal | Defect | Representative Model | Image AUC | Image AP | Pixel AUC | Pixel AP | Pixel PRO | Params (M) | Input Size | Batch Size | VRAM (GB) | Inference (FPS) | Train time/epoch | Hardware | Precision Type | Year | License | Link | Paper/Page |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Name | Domain | Modality | Defect Type | Task | Annotation | Total | Normal | Defect | Representative Model | Image AUC | Image AP | Pixel AUC | Pixel AP | Pixel PRO | Params (M) | Input Size | Batch Size | VRAM (GB) | Inference (FPS) | Train time/epoch | Hardware | Precision Type | Year | License | Link | Paper/Page |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
- Benchmarks/Leaderboards: Refer to each dataset's official page and paper
Metadata in this repository welcomes open contributions. The copyright/license of each dataset follows its respective provider.