- Overview
- Project Structure
- Data Sources
- Workflow Diagram
- Reproduction Steps - Environment Setup - Running the Analysis
- Key Modules
- License
This project analyzes three social care interventions in Bradford:
- Child Protection Plans (CPP)
- Looked After Children (LAC)
- Children in Need Plans (CINP)
The analysis examines both demographic patterns and geographical distribution at Lower Super Output Area (LSOA) level.
.
├── code/ # Reusable modules for analysis
├── data/ # Input datasets
├── docs/ # Documentation
├── figs/ # Generated visualizations
├── notebooks/ # Analysis notebooks
└── requirements.txt # Dependencies
- Bradford boundary data (LSOA level) - LINK
- English Index of Multiple Deprivation (IMD) 2019 - LINK
- Bradford children population data (0-17, 2021) - LINK
- Children's social care data (CPP, LAC, CINP) - Connected Bradford
This diagram provides an overview of the analysis workflow:
- Clone this repository and navigate to the project folder:
git clone https://github.com/ConnectedBradford/CB_2649
cd CB_2649
- Create and activate a virtual environment:
# For Windows
python -m venv venv
venve\Scripts\activate
# For Mac/Linux
python -m venv venv
source venv/bin/activate
- Install dependencies:
pip install -r requirements.txt
The demographic analysis workflow:
- Run the initial CPP analysis:
jupyter notebook notebooks/cpp_demographic_analysis.ipynb
- The LAC and CINP demographic analyses reuse modules from the CPP analysis:
jupyter notebook notebooks/lac_demographic_analysis.ipynb jupyter notebook notebooks/cinp_demographic_analysis.ipynb
The LSOA analysis workflow:
- Run the initial LAC analysis:
jupyter notebook notebooks/lac_lsoa_analysis.ipynb
- The CPP and CINP LSOA analyses reuse modules from the LAC analysis:
jupyter notebook notebooks/cpp_lsoa_analysis.ipynb jupyter notebook notebooks/cinp_lsoa_analysis.ipynb
For a combined analysis of assessment across interventions:
jupyter notebook notebooks/assessment_analysis.ipynb
data_cleaning.py
: Data preparation and standardizationanalysis_helpers.py
: Analysis functions for demographic analysislsoa_analysis_helper.py
: Geospatial analysis functions for LSOA-level analysis
See the LICENSE file for details.