Skip to content

ConnectedBradford/CB_2649

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CB_2649 - LAC II 2024/2025


Table of Contents



Overview

This project analyzes three social care interventions in Bradford:

  • Child Protection Plans (CPP)
  • Looked After Children (LAC)
  • Children in Need Plans (CINP)

The analysis examines both demographic patterns and geographical distribution at Lower Super Output Area (LSOA) level.

Project Structure

.
├── code/               # Reusable modules for analysis
├── data/               # Input datasets
├── docs/               # Documentation
├── figs/               # Generated visualizations
├── notebooks/          # Analysis notebooks     
└── requirements.txt    # Dependencies

Data Sources

  • Bradford boundary data (LSOA level) - LINK
  • English Index of Multiple Deprivation (IMD) 2019 - LINK
  • Bradford children population data (0-17, 2021) - LINK
  • Children's social care data (CPP, LAC, CINP) - Connected Bradford

Workflow Diagram

This diagram provides an overview of the analysis workflow:

Activity Diagram

Reproduction Steps

Environment Setup

  1. Clone this repository and navigate to the project folder:
git clone https://github.com/ConnectedBradford/CB_2649
cd CB_2649
  1. Create and activate a virtual environment:
# For Windows
python -m venv venv
venve\Scripts\activate

# For Mac/Linux
python -m venv venv
source venv/bin/activate
  1. Install dependencies:
pip install -r requirements.txt

Running the Analysis

Demographic Analysis

The demographic analysis workflow:

  1. Run the initial CPP analysis:
    jupyter notebook notebooks/cpp_demographic_analysis.ipynb
  2. The LAC and CINP demographic analyses reuse modules from the CPP analysis:
    jupyter notebook notebooks/lac_demographic_analysis.ipynb
    jupyter notebook notebooks/cinp_demographic_analysis.ipynb

LSOA-Level Analysis

The LSOA analysis workflow:

  1. Run the initial LAC analysis:
    jupyter notebook notebooks/lac_lsoa_analysis.ipynb
  2. The CPP and CINP LSOA analyses reuse modules from the LAC analysis:
    jupyter notebook notebooks/cpp_lsoa_analysis.ipynb
    jupyter notebook notebooks/cinp_lsoa_analysis.ipynb

Comprehensive Assessment

For a combined analysis of assessment across interventions:

jupyter notebook notebooks/assessment_analysis.ipynb

Key Modules

  • data_cleaning.py: Data preparation and standardization
  • analysis_helpers.py: Analysis functions for demographic analysis
  • lsoa_analysis_helper.py: Geospatial analysis functions for LSOA-level analysis

7. License

See the LICENSE file for details.

About

Looked After Children II

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published