Skip to content

Codinewbie/ai-interview-trainer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

🧠 AI Interview Trainer (Mock Q&A Engine)

AI Interview Trainer is a full-stack web application designed to simulate real-time mock interviews using advanced AI models. It evaluates your answers, scores your performance, and even lets you download interview summaries as PDFs — making it an ideal tool for job preparation.


🚀 Key Features

  • 🎤 Mock Interviews Powered by AI – Real-time Q&A using OpenRouter’s AI models.
  • 🧠 Answer Scoring & Feedback – Evaluates answers for clarity, relevance, and completeness.
  • 📄 PDF Summary Export – Download detailed summaries of your interview sessions.
  • 📜 Interview History – View all your past interviews and feedback.
  • 🔐 Authentication – Secure login using JWT tokens.
  • 🌐 Modern UI – Built with React, Tailwind CSS, and Vite for a fast and responsive experience.

⚙️ Setup Instructions

📁 Folder Structure

ai-interview-trainer/ ├── frontend/ # React + Vite + Tailwind CSS └── backend/ # Node.js + Express + MongoDB + PDFKit


🔧 Backend Setup

  1. Navigate to the backend directory:
    cd backend
  2. Install dependencies:
    npm install

3.Create a .env file in the backend folder and add the following:

PORT=5000
MONGODB_URI=your_mongodb_connection_string
OPENROUTER_API_KEY=your_openrouter_api_key
JWT_SECRET=your_jwt_secret

4.Start the backend server:

npm start

🔧 Frontend Setup

cd ../frontend
npm install

Update the backend URL inside all API requests (you can use a constant file for this if needed).

Start frontend:

npm run dev

📁 Project Structure

oxeir-ai-interview-trainer/
│
├── backend/
│   ├── routes/
│   ├── controllers/
│   ├── models/
│   ├── utils/
│   ├── index.js
│   └── .env
│
├── frontend/
│   ├── src/
│   │   ├── components/
│   │   ├── pages/
│   │   ├── services/
│   │   └── App.jsx
│   └── vite.config.js
│
└── README.md

##🧠 AI Logic

  • The backend uses OpenRouter's deepseek-chat-v3-0324 model.
  • On starting an interview, domain-specific questions are generated.
  • User answers are stored, and follow-up questions + feedback are generated.
  • A summary is auto-generated and stored.
  • A PDF version can be exported using pdfkit.

##🧾 API Endpoints

  • Auth POST /api/login Request:
{
  "userId": "1234",
  "name": "Aman"
}

Response:

{
  "token": "<JWT_TOKEN>"
}

Interview

  • POST /api/interview/start – Start a new interview session
  • POST /api/interview/answer – Submit answer and get follow-up
  • POST /api/interview/summary – Generate summary of the session
  • POST /api/interview/download-pdf – Export summary as PDF

🌍 Deployment

  • Frontend: Vercel
  • Backend: Render
  • Database: MongoDB Atlas

Make sure to set environment variables correctly on both platforms.

🙌 Acknowledgments

  • OpenRouter for model access
  • DeepSeek for AI model
  • Vercel & Render for deployment

Releases

No releases published

Packages

No packages published

Languages