-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit fe1b873
Showing
2 changed files
with
8,803 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,253 @@ | ||
rm(list=ls()) | ||
library("MASS") | ||
|
||
set.seed(312) | ||
|
||
# (a) | ||
mwanza <- read.csv('mwanza.csv', header=TRUE) | ||
mwanza$community <- as.factor(mwanza$community) | ||
glm.fit <- glmmPQL(hiv~arm,random=~1|community,family='binomial',data=mwanza) | ||
summary(glm.fit) | ||
|
||
alpha.glm <- as.numeric(glm.fit$coefficients$fixed[1]) | ||
beta.glm <- as.numeric(glm.fit$coefficients$fixed[2]) | ||
sigma2.glm <- as.numeric(VarCorr(glm.fit)[1,1]) | ||
u.glm <- as.numeric(ranef(glm.fit)$"(Intercept)") | ||
|
||
# (b) | ||
# organize data | ||
n <- length(unique(mwanza$community)) | ||
y <- vector("list",n) | ||
x <- vector("list",n) | ||
|
||
for ( i in 1:n ){ | ||
index <- which(mwanza$community==i) | ||
y[[i]] <- mwanza$hiv[index] | ||
x[[i]] <- mwanza$arm[index] | ||
} | ||
|
||
## log-likelihood function ## | ||
log.likelihood <- function(y,x,alpha,beta,u){ | ||
pred <- alpha + beta*x + u | ||
log.like <- sum(y*pred-log(1+exp(pred))) | ||
return(log.like) | ||
} | ||
|
||
## log-prior distribution ## | ||
log.prior <- function(u,sigma2){ | ||
u.log.prior <- dnorm(u, mean=0, sd=sqrt(sigma2), log=TRUE) | ||
return(u.log.prior) | ||
} | ||
|
||
## log-posterior distribution ## | ||
log.posterior <- function(y,x,alpha,beta,u,sigma2){ | ||
u.log.post <- log.likelihood(y,x,alpha,beta,u) + log.prior(u,sigma2) | ||
return(u.log.post) | ||
} | ||
|
||
## Hasting-Metroplis algorithm ## | ||
H_M <- function(y,x,alpha,beta,u,sigma2,size,burnin=500,intval=20){ | ||
iter <- burnin+intval*size | ||
u.chain <- rep(0,iter) | ||
u.chain[1] <- u | ||
for (i in 1:(iter-1) ){ | ||
# proposal function | ||
u.prop <- rnorm(1,mean=u.chain[i],sd=sqrt(sigma2)) | ||
prob <- min(exp(log.posterior(y,x,alpha,beta,u.prop,sigma2)-log.posterior(y,x,alpha,beta,u.chain[i],sigma2)),1) | ||
if( runif(1) < prob ){ | ||
u.chain[i+1] <- u.prop | ||
} else { | ||
u.chain[i+1] <- u.chain[i] | ||
} | ||
} | ||
# remove burnin sample | ||
u.chain <- u.chain[-(1:burnin)] | ||
# subsample | ||
u.sample <- u.chain[seq(1,iter-burnin,by=intval)] | ||
return(u.sample) | ||
} | ||
|
||
## EM function ## | ||
Qm <- function(theta,y,x,u,w,size){ | ||
alpha <- theta[1] | ||
beta <- theta[2] | ||
sigma2 <- theta[3] | ||
n <- length(y) | ||
|
||
Q <- 0 | ||
for ( t in 1:size ){ | ||
tmp.log <- 0 | ||
for ( i in 1:n ){ | ||
tmp.log <- tmp.log + log.posterior(y[[i]],x[[i]],alpha,beta,u[t,i],sigma2) | ||
} | ||
Q <- Q + w[t]*tmp.log | ||
} | ||
Q <- Q/sum(w) | ||
return(Q) | ||
} | ||
|
||
## partial derivative for log-likelihood | ||
der.log.alpha <- function(y,x,alpha,beta,u){ | ||
n <- length(y) | ||
tmp <- 0 | ||
for ( i in 1:n ){ | ||
pred_i <- alpha + beta*x[[i]]+u[i] | ||
tmp <- tmp + sum(y[[i]]-exp(pred_i)/(1+exp(pred_i))) | ||
} | ||
return(tmp) | ||
} | ||
|
||
der.log.beta <- function(y,x,alpha,beta,u){ | ||
n <- length(y) | ||
tmp <- 0 | ||
for ( i in 1:n ){ | ||
pred_i <- alpha + beta*x[[i]]+u[i] | ||
tmp <- tmp + sum(y[[i]]*x[[i]]-x[[i]]*exp(pred_i)/(1+exp(pred_i))) | ||
} | ||
return(tmp) | ||
} | ||
|
||
der.log.sigma2 <- function(sigma2, u){ | ||
n <- length(u) | ||
tmp <- crossprod(u)/(2*(sigma2^2))-n/(2*sigma2) | ||
return(as.numeric(tmp)) | ||
} | ||
|
||
## start MCEM ## | ||
## constant setting | ||
nu <- 1 | ||
d <- 0.5 | ||
c <- 3 | ||
a <- 0.25 | ||
niter <- 100 | ||
|
||
# step 1. Initialize | ||
# number of random sample generated for u | ||
mc.size <- 100 | ||
alpha.em <- alpha.glm | ||
beta.em <- beta.glm | ||
sigma2.em <- sigma2.glm | ||
#alpha.em <- -0.5 | ||
#beta.em <- -0.5 | ||
#sigma2.em <- 0.5 | ||
|
||
# step 2. Generate u_1,...,u_m via Hasting-Metropolis Algorithm | ||
u <- matrix(0, nrow = mc.size, ncol = n) | ||
for ( i in 1:n ){ | ||
u[,i] <- H_M(y[[i]],x[[i]],alpha.em[1],beta.em[1],u.glm[i],sigma2.em[1],mc.size) | ||
} | ||
|
||
# start EM iter step 3 to step 9 | ||
r <- 1 | ||
repeat{ | ||
print(r) | ||
# step 3. compute importance weights | ||
w <- numeric() | ||
for ( t in 1:mc.size ){ | ||
tmp <- 0 | ||
for ( i in 1:n ){ | ||
tmp <- tmp + (log.posterior(y[[i]],x[[i]],alpha.em[r],beta.em[r],u[t,i],sigma2.em[r]) | ||
- log.posterior(y[[i]],x[[i]],alpha.em[1],beta.em[1],u[t,i],sigma2.em[1])) | ||
} | ||
w[t] <- exp(tmp) | ||
} | ||
|
||
# step 4 & 5 E-M step | ||
par <- optim(c(alpha.glm,beta.glm,sigma2.glm), Qm, NULL, y = y, x = x, u = u, w = w, size=mc.size, | ||
lower = c(-6,-2,0.05), upper = c(-2,1,1), method = "L-BFGS-B", | ||
control = list(fnscale = -1 ), hessian = FALSE)$par | ||
alpha.em[r+1] <- par[1] | ||
beta.em[r+1] <- par[2] | ||
sigma2.em[r+1] <- par[3] | ||
print(par) | ||
|
||
# step 6 MC error estimation | ||
# (a) | ||
mu.alpha <- 0 | ||
mu.beta <- 0 | ||
mu.sigma2 <- 0 | ||
for ( t in 1:mc.size ){ | ||
mu.alpha <- mu.alpha + w[t]*der.log.alpha(y,x,alpha.em[r+1],beta.em[r+1],u[t,]) | ||
mu.beta <- mu.beta + w[t]*der.log.beta(y,x,alpha.em[r+1],beta.em[r+1],u[t,]) | ||
mu.sigma2 <- mu.sigma2 + w[t]*der.log.sigma2(sigma2.em[r+1],u[t,]) | ||
} | ||
mu.alpha <- mu.alpha/sum(w) | ||
mu.beta <- mu.beta/sum(w) | ||
mu.sigma2 <- mu.sigma2/sum(w) | ||
|
||
# (b) | ||
var.alpha <- 0 | ||
var.beta <- 0 | ||
var.sigma2 <- 0 | ||
for ( t in 1:mc.size ){ | ||
var.alpha <- var.alpha + w[t]*(der.log.alpha(y,x,alpha.em[r+1],beta.em[r+1],u[t,])^2) | ||
var.beta <- var.beta + w[t]*(der.log.beta(y,x,alpha.em[r+1],beta.em[r+1],u[t,])^2) | ||
var.sigma2 <- var.sigma2 + w[t]*(der.log.sigma2(sigma2.em[r+1],u[t,])^2) | ||
} | ||
var.alpha <- var.alpha/sum(w) - mu.alpha^2 | ||
var.beta <- var.beta/sum(w) - mu.beta^2 | ||
var.simga2 <- var.sigma2/sum(w) - mu.sigma2^2 | ||
|
||
# (c) | ||
alpha.CI <- c(mu.alpha - qnorm(1-a/2)*sqrt(var.alpha),mu.alpha + qnorm(1-a/2)*sqrt(var.alpha) ) | ||
beta.CI <- c(mu.beta - qnorm(1-a/2)*sqrt(var.beta),mu.beta + qnorm(1-a/2)*sqrt(var.beta) ) | ||
sigma2.CI <- c(mu.sigma2 - qnorm(1-a/2)*sqrt(var.sigma2),mu.sigma2 + qnorm(1-a/2)*sqrt(var.sigma2) ) | ||
|
||
# step 7 | ||
tk <- numeric() | ||
k <- 1 | ||
repeat{ | ||
xk <- rpois(1, lambda=nu*(k^d)) + 1 | ||
tk[k] <- xk + sum(tk) | ||
if ( tk[k] > mc.size ){ | ||
break | ||
} | ||
k <- k+1 | ||
} | ||
N <- k-1 | ||
tk <- tk[1:N] | ||
|
||
# step 8 | ||
if ( r > 1 ){ | ||
if ( ((alpha.CI[1] <= Q.alpha) && (Q.alpha <= alpha.CI[2])) && | ||
((beta.CI[1] <= Q.beta) && (Q.beta <= beta.CI[2])) && | ||
((sigma2.CI[1] <= Q.sigma2) && (Q.sigma2 <= sigma2.CI[2])) ){ | ||
m0.size <- mc.size | ||
mc.size <- m0.size + floor(m0.size/c) | ||
## generate new sample via MCMC algorithm | ||
u.new <- matrix(0, nrow = (mc.size - m0.size), ncol = n) | ||
# run H-M Algorithm for each u_i | ||
for ( i in 1:n ){ | ||
u.new[,i] <- H_M(y[[i]],x[[i]],alpha.em[1],beta.em[1],u.glm[i],sigma2.em[1],(mc.size - m0.size)) | ||
} | ||
u <- rbind(u,u.new) | ||
print('MC sample size') | ||
print(mc.size) | ||
} | ||
} | ||
|
||
# step 9 | ||
Q.alpha <- 0 | ||
Q.beta <- 0 | ||
Q.sigma2 <- 0 | ||
|
||
for ( k in 1:N ){ | ||
Q.alpha <- Q.alpha + w[tk[k]]*der.log.alpha(y,x,alpha.em[r+1],beta.em[r+1],u[tk[k],]) | ||
Q.beta <- Q.beta + w[tk[k]]*der.log.beta(y,x,alpha.em[r+1],beta.em[r+1],u[tk[k],]) | ||
Q.sigma2 <- Q.sigma2 + w[tk[k]]*der.log.sigma2(sigma2.em[r+1],u[tk[k],]) | ||
} | ||
Q.alpha <- Q.alpha/sum(w[tk]) | ||
Q.beta <- Q.beta/sum(w[tk]) | ||
Q.sigma2 <- Q.sigma2/sum(w[tk]) | ||
|
||
r <- r+1 | ||
if ( r > niter ){ | ||
break | ||
} | ||
|
||
} | ||
|
||
## fit model by R ## | ||
library(lme4) | ||
lmer.fit <- glmer(hiv~arm+(1|community),family=binomial(link = logit),data=mwanza) | ||
summary(lmer.fit) |
Oops, something went wrong.
fe1b873
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is there any reference articles?There's no notes of your code, and I can not really understand it.Thanks.
fe1b873
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It's all in the about.

fe1b873
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Sorry,I can't open it.