-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
translated majority of ukf to the page
- Loading branch information
1 parent
3c7b8df
commit f7a140b
Showing
1 changed file
with
122 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
#!/usr/bin/env python3 | ||
|
||
import sys | ||
import numpy as np | ||
import scipy | ||
import scipy.linalg | ||
import rospy | ||
import time | ||
|
||
from nav_msgs.msg import Odometry as ROSOdom | ||
|
||
STATE_SPACE_DIM = 3 | ||
MEASUREMENT_SPACE_DIM = 2 | ||
|
||
class UKF: | ||
def __init__(self, wheelbase : float, zeroth_sigma_point_weight : float, process_noise : np.ndarray, gps_noise : np.ndarray): | ||
self.wheelbase = wheelbase | ||
self.zeroth_sigma_point_weight = zeroth_sigma_point_weight | ||
self.speed = 0 | ||
self.process_noise = process_noise | ||
self.gps_noise = gps_noise | ||
|
||
self.predicted_state_est = np.zeros((STATE_SPACE_DIM, 1)) | ||
self.predicted_state_cov = np.zeros((STATE_SPACE_DIM, STATE_SPACE_DIM)) | ||
|
||
self.updated_state_est = np.zeros((STATE_SPACE_DIM, 1)) | ||
self.updated_state_cov = np.zeros((STATE_SPACE_DIM, STATE_SPACE_DIM)) | ||
|
||
self.last_time = time.time() | ||
|
||
|
||
|
||
def generate_sigmas(self, mean : np.ndarray, covariance : np.ndarray, sigmas : list[np.ndarray], weights : list[float]): | ||
A = scipy.linalg.sqrtm(covariance) | ||
|
||
weights[0] = self.zeroth_sigma_point_weight | ||
sigmas[0] = mean | ||
|
||
for i in range(STATE_SPACE_DIM): | ||
s = (STATE_SPACE_DIM / (1 - weights[0])) ** 0.5 | ||
A_col = A[:, i] | ||
sigmas[i+1] = mean + A_col | ||
sigmas[i + 1 + STATE_SPACE_DIM] = mean - A_col | ||
|
||
for i in range(1, 2 * STATE_SPACE_DIM + 1): | ||
weights[i] = (1 - weights[0]) / (2 * STATE_SPACE_DIM) | ||
|
||
def dynamics(self, state : np.ndarray, steering : float ) -> np.ndarray: | ||
x = np.zeros((STATE_SPACE_DIM, 1), dtype=np.float64) | ||
x[0, 0] = self.speed * np.cos(state[2, 0]) | ||
x[1, 0] = self.speed * np.sin(state[2, 0]) | ||
x[2, 0] = self.speed * np.tan(steering) / self.wheelbase | ||
return x | ||
|
||
def rk4(self, state : np.ndarray, steering : float, dt : float) -> np.ndarray: | ||
k1 = self.dynamics(state, steering) | ||
k2 = self.dynamics(state + (k1 * (dt / 2)), steering) | ||
k3 = self.dynamics(state + (k2 * (dt / 2)), steering) | ||
k4 = self.dynamics(state + (k3 * dt), steering) | ||
|
||
return state + ((k1 + (k2 * 2.0) + (k3 * 2.0) + k4) * (dt / 6)) | ||
|
||
def state_to_measurement(vector : np.ndarray) -> np.ndarray: | ||
m = np.zeros((MEASUREMENT_SPACE_DIM, 1)) | ||
m[:, 0] = vector[:2, 0] | ||
return m | ||
|
||
def set_speed(self, speed): | ||
self.speed = speed | ||
|
||
def predict(self, curr_state_est : np.narray, curr_state_cov : np.ndarray, steering : float, dt : float): | ||
state_sigmas = [np.zeros((STATE_SPACE_DIM, 1))] * (2 * STATE_SPACE_DIM + 1) | ||
state_weights = [0.0] * (2 * STATE_SPACE_DIM + 1) | ||
self.generate_sigmas(curr_state_est, curr_state_cov, state_sigmas, state_weights) | ||
|
||
for i in range(2 * STATE_SPACE_DIM + 1): | ||
state_sigmas[i] = self.rk4(state_sigmas[i], steering, dt) | ||
|
||
self.predicted_state_est = np.zeros((STATE_SPACE_DIM, 1)) | ||
self.predicted_state_cov = np.zeros((STATE_SPACE_DIM, STATE_SPACE_DIM)) | ||
|
||
for i in range(2 * STATE_SPACE_DIM + 1): | ||
self.predicted_state_est += state_sigmas[i] * state_weights[i] | ||
|
||
for i in range(2 * STATE_SPACE_DIM + 1): | ||
m = state_sigmas[i] - self.predicted_state_est | ||
self.predicted_state_cov += ((m * m.T) * state_weights[i]) | ||
|
||
self.predicted_state_cov += self.process_noise * dt | ||
|
||
def update(self, curr_state_est : np.narray, curr_state_cov : np.ndarray, measurement : np.ndarray): | ||
|
||
state_sigmas = [np.zeros((STATE_SPACE_DIM, 1))] * (2 * STATE_SPACE_DIM + 1) | ||
weights = [0.0] * (2 * STATE_SPACE_DIM + 1) | ||
self.generate_sigmas(curr_state_est, curr_state_cov, state_sigmas, weights) | ||
|
||
measurement_sigmas = [np.zeros((MEASUREMENT_SPACE_DIM, 1))] * (2 * STATE_SPACE_DIM + 1) | ||
for i in range(2 * STATE_SPACE_DIM + 1): | ||
measurement_sigmas[i] = self.state_to_measurement(state_sigmas[i]) | ||
|
||
predicted_measurement = np.zeros((MEASUREMENT_SPACE_DIM, 1)) | ||
for i in range(2 * STATE_SPACE_DIM + 1): | ||
predicted_measurement += measurement_sigmas[i] * weights[i] | ||
|
||
innovation_cov = np.zeros((MEASUREMENT_SPACE_DIM, MEASUREMENT_SPACE_DIM)) | ||
cross_cov = np.zeros((STATE_SPACE_DIM, MEASUREMENT_SPACE_DIM)) | ||
|
||
for i in range(2 * STATE_SPACE_DIM + 1): | ||
m = measurement_sigmas[i] - predicted_measurement | ||
innovation_cov += (m * m.T) * weights[i] | ||
cross_cov += ((state_sigmas[i] - curr_state_est) * m.T) * weights[i] | ||
|
||
innovation_cov += self.gps_noise | ||
kalman_gain = cross_cov @ innovation_cov | ||
|
||
print("Measurement: ", measurement) | ||
print("Predicted measurement:", predicted_measurement) | ||
print("Kalman gain:", kalman_gain) | ||
self.updated_state_est = curr_state_est + (kalman_gain * (measurement - predicted_measurement)) | ||
self.updated_state_cov = curr_state_cov - (kalman_gain * (innovation_cov * kalman_gain.T)) | ||
|
||
|