pip install git+https://github.com/Bedrock-py/opal-analytics-stan.git
self.parameters_spec = [
{ "name" : "Formula", "attrname" : "formula", "value" : "decision0d1c ~ condition", "type" : "input" },
{ "name" : "GLM family", "attrname" : "family", "value" : 'logit', "type" : "input" },
{ "name" : "chains", "attrname" : "chains" , "value" : "3", "type" : "input"},
{ "name" : "iter", "attrname" : "iter" , "value" : "3000", "type" : "input"},
{ "name" : "prior", "attrname" : "prior" , "value" : "", "type" : "input"},
{ "name" : "prior_intercept", "attrname" : "prior_intercept" , "value" : "", "type" : "input"}
]
formula
A R-style formula for regression given as a stringfamily
binomial(link = "logit") is the only family supported currently, future updates will add more familieschains
number of chains to runiter
number of iterationsprior
expected format: student_t(-0.186, 0.036, df = 7)prior intercept
expected fromat: student_t(0.662, 0.196, df = 7)
parameters derived from https://github.com/gallup/NGS2/blob/master/NGS2_WITNESS_Cycle1_bayesian_exp1.R
matrix.csv
The full matrix with both endogenous and exogenous variablesfeatures.txt
A list of column names for the matrix (one name per row)
matrix.csv
data frame of summary() function on bayesian model
prior_summary.txt
Text summarizing prior information for model