-
Notifications
You must be signed in to change notification settings - Fork 136
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #62 from Azure-Samples/CustomVisionUpdateAMD64
Custom Vision Update For AMD64
- Loading branch information
Showing
4 changed files
with
305 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
|
||
import json | ||
import os | ||
import io | ||
|
||
# Imports for the REST API | ||
from flask import Flask, request, jsonify | ||
|
||
# Imports for image procesing | ||
from PIL import Image | ||
|
||
# Imports for prediction | ||
from predict import initialize, predict_image, predict_url | ||
|
||
app = Flask(__name__) | ||
|
||
# 4MB Max image size limit | ||
app.config['MAX_CONTENT_LENGTH'] = 4 * 1024 * 1024 | ||
|
||
# Default route just shows simple text | ||
@app.route('/') | ||
def index(): | ||
return 'CustomVision.ai model host harness' | ||
|
||
# Like the CustomVision.ai Prediction service /image route handles either | ||
# - octet-stream image file | ||
# - a multipart/form-data with files in the imageData parameter | ||
@app.route('/image', methods=['POST']) | ||
@app.route('/<project>/image', methods=['POST']) | ||
@app.route('/<project>/image/nostore', methods=['POST']) | ||
@app.route('/<project>/classify/iterations/<publishedName>/image', methods=['POST']) | ||
@app.route('/<project>/classify/iterations/<publishedName>/image/nostore', methods=['POST']) | ||
@app.route('/<project>/detect/iterations/<publishedName>/image', methods=['POST']) | ||
@app.route('/<project>/detect/iterations/<publishedName>/image/nostore', methods=['POST']) | ||
def predict_image_handler(project=None, publishedName=None): | ||
try: | ||
imageData = None | ||
if ('imageData' in request.files): | ||
imageData = request.files['imageData'] | ||
elif ('imageData' in request.form): | ||
imageData = request.form['imageData'] | ||
else: | ||
imageData = io.BytesIO(request.get_data()) | ||
|
||
img = Image.open(imageData) | ||
results = predict_image(img) | ||
return jsonify(results) | ||
except Exception as e: | ||
print('EXCEPTION:', str(e)) | ||
return 'Error processing image', 500 | ||
|
||
|
||
# Like the CustomVision.ai Prediction service /url route handles url's | ||
# in the body of hte request of the form: | ||
# { 'Url': '<http url>'} | ||
@app.route('/url', methods=['POST']) | ||
@app.route('/<project>/url', methods=['POST']) | ||
@app.route('/<project>/url/nostore', methods=['POST']) | ||
@app.route('/<project>/classify/iterations/<publishedName>/url', methods=['POST']) | ||
@app.route('/<project>/classify/iterations/<publishedName>/url/nostore', methods=['POST']) | ||
@app.route('/<project>/detect/iterations/<publishedName>/url', methods=['POST']) | ||
@app.route('/<project>/detect/iterations/<publishedName>/url/nostore', methods=['POST']) | ||
def predict_url_handler(project=None, publishedName=None): | ||
try: | ||
image_url = json.loads(request.get_data().decode('utf-8'))['url'] | ||
results = predict_url(image_url) | ||
return jsonify(results) | ||
except Exception as e: | ||
print('EXCEPTION:', str(e)) | ||
return 'Error processing image' | ||
|
||
if __name__ == '__main__': | ||
# Load and intialize the model | ||
initialize() | ||
|
||
# Run the server | ||
app.run(host='0.0.0.0', port=80) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
|
||
from urllib.request import urlopen | ||
from datetime import datetime | ||
|
||
import tensorflow as tf | ||
|
||
from PIL import Image | ||
import numpy as np | ||
import sys | ||
|
||
filename = 'model.pb' | ||
labels_filename = 'labels.txt' | ||
|
||
network_input_size = 0 | ||
|
||
output_layer = 'loss:0' | ||
input_node = 'Placeholder:0' | ||
|
||
graph_def = tf.compat.v1.GraphDef() | ||
labels = [] | ||
|
||
def initialize(): | ||
print('Loading model...',end=''), | ||
with open(filename, 'rb') as f: | ||
graph_def.ParseFromString(f.read()) | ||
tf.import_graph_def(graph_def, name='') | ||
|
||
# Retrieving 'network_input_size' from shape of 'input_node' | ||
with tf.compat.v1.Session() as sess: | ||
input_tensor_shape = sess.graph.get_tensor_by_name(input_node).shape.as_list() | ||
|
||
assert len(input_tensor_shape) == 4 | ||
assert input_tensor_shape[1] == input_tensor_shape[2] | ||
|
||
global network_input_size | ||
network_input_size = input_tensor_shape[1] | ||
|
||
print('Success!') | ||
print('Loading labels...', end='') | ||
with open(labels_filename, 'rt') as lf: | ||
global labels | ||
labels = [l.strip() for l in lf.readlines()] | ||
print(len(labels), 'found. Success!') | ||
|
||
def log_msg(msg): | ||
print("{}: {}".format(datetime.now(),msg)) | ||
|
||
def extract_bilinear_pixel(img, x, y, ratio, xOrigin, yOrigin): | ||
xDelta = (x + 0.5) * ratio - 0.5 | ||
x0 = int(xDelta) | ||
xDelta -= x0 | ||
x0 += xOrigin | ||
if x0 < 0: | ||
x0 = 0; | ||
x1 = 0; | ||
xDelta = 0.0; | ||
elif x0 >= img.shape[1]-1: | ||
x0 = img.shape[1]-1; | ||
x1 = img.shape[1]-1; | ||
xDelta = 0.0; | ||
else: | ||
x1 = x0 + 1; | ||
|
||
yDelta = (y + 0.5) * ratio - 0.5 | ||
y0 = int(yDelta) | ||
yDelta -= y0 | ||
y0 += yOrigin | ||
if y0 < 0: | ||
y0 = 0; | ||
y1 = 0; | ||
yDelta = 0.0; | ||
elif y0 >= img.shape[0]-1: | ||
y0 = img.shape[0]-1; | ||
y1 = img.shape[0]-1; | ||
yDelta = 0.0; | ||
else: | ||
y1 = y0 + 1; | ||
|
||
#Get pixels in four corners | ||
bl = img[y0, x0] | ||
br = img[y0, x1] | ||
tl = img[y1, x0] | ||
tr = img[y1, x1] | ||
#Calculate interpolation | ||
b = xDelta * br + (1. - xDelta) * bl | ||
t = xDelta * tr + (1. - xDelta) * tl | ||
pixel = yDelta * t + (1. - yDelta) * b | ||
return pixel | ||
|
||
def extract_and_resize(img, targetSize): | ||
determinant = img.shape[1] * targetSize[0] - img.shape[0] * targetSize[1] | ||
if determinant < 0: | ||
ratio = float(img.shape[1]) / float(targetSize[1]) | ||
xOrigin = 0 | ||
yOrigin = int(0.5 * (img.shape[0] - ratio * targetSize[0])) | ||
elif determinant > 0: | ||
ratio = float(img.shape[0]) / float(targetSize[0]) | ||
xOrigin = int(0.5 * (img.shape[1] - ratio * targetSize[1])) | ||
yOrigin = 0 | ||
else: | ||
ratio = float(img.shape[0]) / float(targetSize[0]) | ||
xOrigin = 0 | ||
yOrigin = 0 | ||
resize_image = np.empty((targetSize[0], targetSize[1], img.shape[2]), dtype=np.float32) | ||
for y in range(targetSize[0]): | ||
for x in range(targetSize[1]): | ||
resize_image[y, x] = extract_bilinear_pixel(img, x, y, ratio, xOrigin, yOrigin) | ||
return resize_image | ||
|
||
def extract_and_resize_to_256_square(image): | ||
h, w = image.shape[:2] | ||
log_msg("crop_center: " + str(w) + "x" + str(h) +" and resize to " + str(256) + "x" + str(256)) | ||
return extract_and_resize(image, (256, 256)) | ||
|
||
def crop_center(img,cropx,cropy): | ||
h, w = img.shape[:2] | ||
startx = max(0, w//2-(cropx//2)) | ||
starty = max(0, h//2-(cropy//2)) | ||
log_msg("crop_center: " + str(w) + "x" + str(h) +" to " + str(cropx) + "x" + str(cropy)) | ||
return img[starty:starty+cropy, startx:startx+cropx] | ||
|
||
def resize_down_to_1600_max_dim(image): | ||
w,h = image.size | ||
if h < 1600 and w < 1600: | ||
return image | ||
|
||
new_size = (1600 * w // h, 1600) if (h > w) else (1600, 1600 * h // w) | ||
log_msg("resize: " + str(w) + "x" + str(h) + " to " + str(new_size[0]) + "x" + str(new_size[1])) | ||
if max(new_size) / max(image.size) >= 0.5: | ||
method = Image.BILINEAR | ||
else: | ||
method = Image.BICUBIC | ||
return image.resize(new_size, method) | ||
|
||
def predict_url(imageUrl): | ||
log_msg("Predicting from url: " +imageUrl) | ||
with urlopen(imageUrl) as testImage: | ||
image = Image.open(testImage) | ||
return predict_image(image) | ||
|
||
def convert_to_nparray(image): | ||
# RGB -> BGR | ||
log_msg("Convert to numpy array") | ||
image = np.array(image) | ||
return image[:, :, (2,1,0)] | ||
|
||
def update_orientation(image): | ||
exif_orientation_tag = 0x0112 | ||
if hasattr(image, '_getexif'): | ||
exif = image._getexif() | ||
if exif != None and exif_orientation_tag in exif: | ||
orientation = exif.get(exif_orientation_tag, 1) | ||
log_msg('Image has EXIF Orientation: ' + str(orientation)) | ||
# orientation is 1 based, shift to zero based and flip/transpose based on 0-based values | ||
orientation -= 1 | ||
if orientation >= 4: | ||
image = image.transpose(Image.TRANSPOSE) | ||
if orientation == 2 or orientation == 3 or orientation == 6 or orientation == 7: | ||
image = image.transpose(Image.FLIP_TOP_BOTTOM) | ||
if orientation == 1 or orientation == 2 or orientation == 5 or orientation == 6: | ||
image = image.transpose(Image.FLIP_LEFT_RIGHT) | ||
return image | ||
|
||
def predict_image(image): | ||
|
||
log_msg('Predicting image') | ||
try: | ||
if image.mode != "RGB": | ||
log_msg("Converting to RGB") | ||
image = image.convert("RGB") | ||
|
||
w,h = image.size | ||
log_msg("Image size: " + str(w) + "x" + str(h)) | ||
|
||
# Update orientation based on EXIF tags | ||
image = update_orientation(image) | ||
|
||
# If the image has either w or h greater than 1600 we resize it down respecting | ||
# aspect ratio such that the largest dimention is 1600 | ||
image = resize_down_to_1600_max_dim(image) | ||
|
||
# Convert image to numpy array | ||
image = convert_to_nparray(image) | ||
|
||
# Crop the center square and resize that square down to 256x256 | ||
resized_image = extract_and_resize_to_256_square(image) | ||
|
||
# Crop the center for the specified network_input_Size | ||
cropped_image = crop_center(resized_image, network_input_size, network_input_size) | ||
|
||
tf.compat.v1.reset_default_graph() | ||
tf.import_graph_def(graph_def, name='') | ||
|
||
with tf.compat.v1.Session() as sess: | ||
prob_tensor = sess.graph.get_tensor_by_name(output_layer) | ||
predictions, = sess.run(prob_tensor, {input_node: [cropped_image] }) | ||
|
||
result = [] | ||
for p, label in zip(predictions, labels): | ||
truncated_probablity = np.float64(round(p,8)) | ||
if truncated_probablity > 1e-8: | ||
result.append({ | ||
'tagName': label, | ||
'probability': truncated_probablity, | ||
'tagId': '', | ||
'boundingBox': None }) | ||
|
||
response = { | ||
'id': '', | ||
'project': '', | ||
'iteration': '', | ||
'created': datetime.utcnow().isoformat(), | ||
'predictions': result | ||
} | ||
|
||
log_msg("Results: " + str(response)) | ||
return response | ||
|
||
except Exception as e: | ||
log_msg(str(e)) | ||
return 'Error: Could not preprocess image for prediction. ' + str(e) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters