Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

readme updates #40

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added docs/images/robots/go1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
41 changes: 36 additions & 5 deletions profile/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,28 @@ We also offer worksheets which contain tasks and solutions and are a great start

## Supported Planners

- [ROSNavRL](packages/rosnavrl.md): Our own planner based on neural networks.
| Planner | Type | Robot | Description | Authors |
|-------------|-----------|---------|---------------|---------------|
| **Applr** | Hybrid | Jackal | A hybrid planner combining different approaches for adaptive planning. | [Xiao et al.](https://www.researchgate.net/publication/342184799_APPLD_Adaptive_Planner_Parameter_Learning_from_Demonstration) | 5 |
| **Cohan** | Classic | All | A traditional planner focusing on human-aware navigation strategies. | [Singamaneni et al.](https://scholar.google.com/citations?view_op=view_citation&hl=en&user=rWw5YTsAAAAJ&citation_for_view=rWw5YTsAAAAJ:9yKSN-GCB0IC) |
| **Dragon** | Hybrid | Jackal | A hybrid navigation system designed for dynamic environments. | [Xiao et al.](https://www.researchgate.net/publication/362858861_Autonomous_Ground_Navigation_in_Highly_Constrained_Spaces_Lessons_learned_from_The_BARN_Challenge_at_ICRA_2022) |
| **DWA** | Classic | All | Dynamic Window Approach, a reactive collision avoidance method considering the robot’s dynamics. | [Khatib et al.](https://www.researchgate.net/publication/3113619_Real-Time_Obstacle_Avoidance_for_Fast_Mobile_Robots) |
| **TEB** | Classic | All | Timed Elastic Bands, optimizing a global path by considering kinematic and dynamic constraints. | [Rösmann, et al.](https://rst.etit.tu-dortmund.de/storages/rst-etit/r/Global/Paper/Roesmann/2015_Roesmann_ECC.PDF) |
| **MPC** | Classic | All | Model Predictive Control, using a model of the robot’s dynamics to predict and optimize future trajectories. | [Rösmann et al.](https://www.researchgate.net/publication/320281520_Time-Optimal_Nonlinear_Model_Predictive_Control_with_Minimal_Control_Interventions) |
| **LFLH** | Hybrid | All | A hybrid planner leveraging both learned and heuristic components for effective navigation. | [Xiao et al.](https://arxiv.org/abs/2011.13112) |
| **RLCA** | Learning | All | Reinforcement Learning Collision Avoidance, using RL for dynamic obstacle avoidance. | [Long et al.](https://arxiv.org/abs/1709.10082) |
| **ROSNavRL** | Learning | All | A learning-based approach trained on Arena 2.0 with Reinforcement Learning. | Arena-Rosnav Team |
| **Trail** | Learning | All | A learning-based planner focusing on trail navigation in unstructured environments. | [Xiao et al.](https://www.researchgate.net/publication/362858861_Autonomous_Ground_Navigation_in_Highly_Constrained_Spaces_Lessons_learned_from_The_BARN_Challenge_at_ICRA_2022) |
| **Crowdnav** | Learning | All | Focuses on navigating safely and efficiently in crowded environments using machine learning techniques. | [Chen et al.](https://arxiv.org/abs/1809.08835) |
| **Sarl** | Learning | All | Socially Aware Reinforcement Learning, emphasizing social norms in navigation. | [Li et al.](https://www.researchgate.net/publication/338722340_SARL_Deep_Reinforcement_Learning_based_Human-Aware_Navigation_for_Mobile_Robot_in_Indoor_Environments) |
| **BRNE** | Game Theory | Quadruped | Utilizes game theory for decision-making in complex scenarios suitable for quadruped robots. | [Muchen Sun et al.](https://www.academia.edu/100123106/Move_Beyond_Trajectories_Distribution_Space_Coupling_for_Crowd_Navigation?uc-g-sw=108439277) |
| **iPlanner** | Learning | Quadruped | A learning-based planner for complex dynamic situations, suitable for quadruped robots. | [Yang et al.](https://arxiv.org/abs/2302.11434) |
| **ArtPlanner** | Learning | Quadruped | A learning-based planner optimized for articulated, quadruped robots. | [Hutter et al.](https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/507668/2021_iros_wellhausen_planner_final_version.pdf?sequence=1) |
| **Aggressive** | Heuristic | All | Employs aggressive strategies for rapid navigation, often in competitive or urgent scenarios. | Arena-Rosnav Team |
| **Polite** | Heuristic | All | Prioritizes polite and socially compliant behaviors in navigation. | Arena-Rosnav Team |
| **Sideways** | Heuristic | All | Specializes in sideways maneuvers, useful in narrow or constrained spaces. | Arena-Rosnav Team |

<!-- - [ROSNavRL](packages/rosnavrl.md): Our own planner based on neural networks.
- Dragon: from the [BARN challenge](https://github.com/Arena-Rosnav/dragon)
- Trail: from the [BARN challenge, TRAIL lab](https://github.com/TempleRAIL/nav-competition-icra2022-drl-vo)
- Applr: a hybrid approach by [Xuesu et al.](https://arxiv.org/abs/2105.07620)
Expand All @@ -105,16 +126,26 @@ We also offer worksheets which contain tasks and solutions and are a great start
- TEB: a classic approach by [Rösmann et al.](https://github.com/rst-tu-dortmund/teb_local_planner)
- DWA: the standard ROS local planning approach by [Marder-Eppstein et al.](http://wiki.ros.org/dwa_local_planner)
- MPC: a classic approach by [Rösmann et al.](https://github.com/rst-tu-dortmund/teb_local_planner)
- and many more (added with Arena 3.0)
- and many more (added with Arena 3.0) -->

## Supported Robots

| _turtlebot3-burger_ | _jackal_ | _ridgeback_ | _agv-ota_ | _tiago_ |
| _Quadruped-GO1_ | _Car-O-Bot4 (cob4)_ | _Tiago_ | _Jackal_ | _Robotino(rto)_ |
| :--------------------------------------------------------------: | :---------------------------------------------------: | :-------------------------------------------------------: | :----------------------------------------------------: | :--------------------------------------------------: |
| <img width="250" src="docs/images/robots/go1.png"> | <img width="250" src="docs/images/robots/cob4.jpg"> | <img width="250" src="docs/images/robots/tiago.jpg"> | <img width="250" src="docs/images/robots/jackal.jpg"> | <img width="250" src="docs/images/robots/rto.jpg"> |

| _Agv-Ota_ | _Youbot_ | _ridgeback_ | _Turtlebot3_Waffle_pi_ | _Turtlebot3-Burger_ |
| :------------------------------------------------: | :---------------------------------------------------: | :------------------------------------------------------------------: | :-------------------------------------------------: | :--------------------------------------------------: |
| <img width="250" src="docs/images/robots/agv-ota.png"> | <img width="250" src="docs/images/robots/youbot.jpg"> | <img width="250" src="docs/images/robots/ridgeback.jpg"> | <img width="250" src="docs/images/robots/turtlebot3_waffle_pi.jpg"> | <img width="250" src="docs/images/robots/dingo.jpg"> |


<!-- | _turtlebot3-burger_ | _jackal_ | _ridgeback_ | _agv-ota_ | _tiago_ |
| :--------------------------------------------------------------: | :---------------------------------------------------: | :-------------------------------------------------------: | :----------------------------------------------------: | :--------------------------------------------------: |
| <img width="250" src="docs/images/robots/turtlebot3-burger.jpg"> | <img width="250" src="docs/images/robots/jackal.jpg"> | <img width="250" src="docs/images/robots/ridgeback.jpg"> | <img width="250" src="docs/images/robots/agv-ota.png"> | <img width="250" src="docs/images/robots/tiago.jpg"> |

| _Robotino(rto)_ | _youbot_ | _turtlebot3_waffle_pi_ | _Car-O-Bot4 (cob4)_ | _dingo_ |
| :------------------------------------------------: | :---------------------------------------------------: | :------------------------------------------------------------------: | :-------------------------------------------------: | :--------------------------------------------------: |
| <img width="250" src="docs/images/robots/rto.jpg"> | <img width="250" src="docs/images/robots/youbot.jpg"> | <img width="250" src="docs/images/robots/turtlebot3_waffle_pi.jpg"> | <img width="250" src="docs/images/robots/cob4.jpg"> | <img width="250" src="docs/images/robots/dingo.jpg"> |
| <img width="250" src="docs/images/robots/rto.jpg"> | <img width="250" src="docs/images/robots/youbot.jpg"> | <img width="250" src="docs/images/robots/turtlebot3_waffle_pi.jpg"> | <img width="250" src="docs/images/robots/cob4.jpg"> | <img width="250" src="docs/images/robots/dingo.jpg"> | -->

## Supported Worlds

Expand All @@ -128,7 +159,7 @@ We also offer worksheets which contain tasks and solutions and are a great start

| Hospital | Restaurant | School | Japanese Garden | Warehouse |
| :--------------------------------------------------------------: | :---------------------------------------------------: | :-------------------------------------------------------: | :----------------------------------------------------: | :--------------------------------------------------: |
| <img width="250" src="docs/images/unity_worlds/hospital.png"> | <img width="250" src="docs/images/unity_worlds/restaurant.png"> | <img width="250" src="docs/images/unity_worlds/school.png"> | <img width="250" src="docs/images/unity_worlds/japanese_garden.png"> | <img width="250" src="docs/images/unity_worlds/warehouse.jpg"> |
| <img width="250" src="docs/images/unity_worlds/hospital.png"> | <img width="250" src="docs/images/unity_worlds/restaurant.jpg"> | <img width="250" src="docs/images/unity_worlds/school.png"> | <img width="250" src="docs/images/unity_worlds/japanese_garden.png"> | <img width="250" src="docs/images/unity_worlds/warehouse.jpg"> |

## Recent Publications
- [Arena-Web (RSS2023)](https://www.roboticsproceedings.org/rss19/p088.pdf): Web-based Development and Benchmarking Platform for Autonomous Navigation Approaches
Expand Down