作者:李军利 AI-Friend / 14th June 2020
内容:图基础和图引擎;图算法:图挖掘、 图表示学习 、图神经网络、 知识表示学习/知识图谱三元组
(Graph Mining 、Graph Embedding、Graph Neural Network、Knowledge-Graph Embedding)
编程相关:Linux、C++、Python、TensorFlow、Pytorch、DGL、PyG、networkx、HDFS
写作动力:随着图引擎和图算法研究的深入,涉及越来越广,希望在 Graph-Algorithms 里记录一些总结和思考
分类:旨在获取embedding的无监督算法称为 图表示学习 ; GNN常常是监督学习; 知识图谱相关的称为 KG-Embedding(我的分类很主观,基于游走的算法常称为图表示算法,基于邻居汇聚的叫 GNN)
| 分类 | 笔记 | 论文 | 代码 | 异构 | 属性 |
|---|---|---|---|---|---|
| 基础 | [Graph Theory] | ||||
| 基础 | [Gemini] | A Computation-Centric Distributed Graph ··· | |||
| 基础 | [信息与熵] | ||||
| 基础 | [Alias method] | ||||
| 基础 | vector similarity | ||||
| 图表示 | [deepwalk] | Online Learning of Social Representations | master | 0 | 0 |
| 图表示 | [node2vec ] | Scalable Feature Learning for Networks | master | 0 | 0 |
| 图表示 | [复现node2vec] | ||||
| 图表示 | [LINE ] | Large-scale Information Network Embedding | master | 0 | 0 |
| 图表示 | [metapath2vec] | Learning for Heterogeneous Networks | 1 | 0 | |
| 图表示 | [DGI] | 0 | 1 | ||
| GNN | [GCN] | Semi-Supervised Classification with GCN | master | 0 | 1 |
| GNN | [GraphSage] | Inductive Representation Learning on L-Graphs | master | 0 | 1 |
| GNN | [GAT] | Graph Attention Network | master | 0 | 1 |
| GNN | [Deep GCN] | 0 | 1 | ||
| GNN | [HGT] | 1 | 1 | ||
| KG-E | [TransE] | ||||
| KG-E | [TransH] | ||||
| KG-E | [TransR] | ||||
| KG-E | [TransD] | ||||
| 图挖掘 | [(W)CC] | ||||
| 图挖掘 | [LPA] | ||||
| 图挖掘 | [SSSP & APSP] | ||||
| 图挖掘 | [InfoMap] | ||||
| 图挖掘 | [Louvain] |