-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
383 lines (341 loc) · 17.7 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
"""
Evaluation protocol, which evaluates one agent's performance in IntersectNav benchmark
"""
import argparse
import math as m
import os
import random
import time
from collections import OrderedDict
from datetime import datetime
import csv
import cv2
import numpy as np
import torch
from tqdm import trange
from env.carla97_env import Env
from env.configer import Configer, weathers, new_weathers
from read_data import Dataset
def render_image(name, img):
"""using cv2
Arguments:
name {str}
img {np.array}
"""
cv2.namedWindow(name)
cv2.imshow(name, img)
cv2.waitKey(3)
def video_write(path, frames, size=(1500, 650), fps=30):
videoWriter = cv2.VideoWriter(path, cv2.VideoWriter_fourcc('M','J','P','G'), fps, size)
for frame in frames:
videoWriter.write(frame)
cv2.waitKey(1)
videoWriter.release()
def create_csv(path, csv_head):
with open(path,'w') as f:
csv_write = csv.writer(f)
csv_write.writerow(csv_head)
def write_csv(path, data_row):
with open(path,'a+') as f:
csv_write = csv.writer(f)
csv_write.writerow(data_row)
class Evaluator:
def __init__(self, args, model, device):
self.branch_list = args.branch_list
self.iters = args.iters
self.eval_steps = args.eval_steps
self.eval_render = args.eval_render
self.store_success_only = args.store_success_only
self.eval_save = args.eval_save
self.port = args.port
self.random_weather = args.random_weather
self.control_agent = args.control_agent
self.work_dir = args.work_dir
self.model = model
self.env = Env(args.port)
self.buffers = Dataset(int(1e10), args.branch_list, '')
self.fp = os.path.dirname(__file__)
self.breakpoint_path = args.breakpoint
self.trace_id = 0
self.device = device
self.new_weather = args.new_weather
# train weathers or test weathers?
self.weather_set = weathers if not self.new_weather else new_weathers
if not self.random_weather:
self.weather_set = ['ClearNoon']
ts = datetime.now().strftime("%m_%d_%H_%M")
csv_dir_name = 'eval_scenes-%s_branches-%s_%s-weather_control-%s_%s' % \
(''.join(map(str, args.scenes)),
''.join(map(str, args.branch_list)),
'train' if not args.new_weather else 'test',
self.control_agent,
ts)
self.csv_dir = os.path.join(self.work_dir, csv_dir_name)
# create directory
if not os.path.exists(self.csv_dir):
os.mkdir(self.csv_dir)
self.lat_cmd2text = {0: 'Follow Lane', 1: 'Turn Left', 2: 'Turn Right', 3: 'Go Straight'}
self.lat_cmd2color = {0: (255, 255, 0), 1: (0, 0, 255), 2: (0, 255, 0), 3: (255, 0, 0)}
self.lon_cmd2text = {0: 'Decelerate', 1: 'Maintain', 2: 'Accelerate'}
self.lon_cmd2color = {0: (255, 0, 0), 1: (255, 255, 255), 2: (0, 255, 0)}
if self.control_agent == 'NN':
assert model, "No NN model is provided!"
fn = 'Control_%s' % self.control_agent
self.csv_path = os.path.join(self.csv_dir, fn + time.strftime('_%m%d_%H%M') + '.csv')
self.txt_path = os.path.join(self.csv_dir, fn + time.strftime('_%m%d_%H%M') + '.txt')
self.save_data = os.path.join(self.csv_dir, 'data' + time.strftime('_%m%d_%H%M') + '.h5')
print("[INFO]: save data path: ", self.save_data)
self.first_write = True
self.txt_created = False
if self.breakpoint_path:
if self.breakpoint_path.startswith('eval'):
pass
else:
self.breakpoint_path = os.path.join(self.csv_dir, self.breakpoint_path)
if not os.path.exists(self.breakpoint_path):
self.breakpoint_path = ''
else:
print("[INFO]: breakpoint file: ", self.breakpoint_path)
def evaluate_episode(self, scene, pose):
if scene['town'] != self.env.world.get_map().name:
self.env = Env(self.port, town=scene['town'])
if self.random_weather:
scene['weather'] = random.choice(self.weather_set)
s_t, info_t = self.env.reset(scene)
video = []
actions = []
lat_cmds = []
lat_cmds_colors = []
lon_cmds = []
lon_cmds_colors = []
tmp_buffer = []
for t in trange(self.eval_steps, desc="step", unit="step"):
branch = scene['branch']
# rgb, shape: (88, 200, 3)
# mea, shape: (4,)
rgb, lid, mea, command, location, rotation = s_t
lat_command, lon_command = command
lat_cmds.append(lat_command)
lon_cmds.append(lon_command)
lat_cmds_colors.append('#%02x%02x%02x' % (
self.lat_cmd2color[lat_command][2],
self.lat_cmd2color[lat_command][1],
self.lat_cmd2color[lat_command][0]))
lon_cmds_colors.append('#%02x%02x%02x' % (
self.lon_cmd2color[lon_command][2],
self.lon_cmd2color[lon_command][1],
self.lon_cmd2color[lon_command][0]))
if self.control_agent == 'NN':
# transpose to PyTorch CxHxW and normalize
img = np.transpose(rgb, (2, 0, 1)) / 255.0
# use speed only?
# mea = mea[0]
a_t = np.zeros([2])
'''
# complete the following code
# neural network inference to predict a_t given img, mea and command
# a_t = self.model.predict(img, mea, command)
'''
else:
a_t = np.zeros([2])
actions.append(a_t)
try:
s_t1, r_t, done, info_t, _ = self.env.step(a_t,
lateral=self.control_agent,
longitude=self.control_agent)
except:
# something nasty happened :(
print("[ERROR] Error happened: step the world")
return None, None, None
else:
pass
if self.eval_save > 0 and t % self.eval_save == 0:
tmp_buffer.append((rgb, lid, mea, command, location, rotation, info_t['a_t'], pose,
int(scene['town'][4:]), scene['scene_id'], self.trace_id,
self.weather_set.index(scene['weather']), [done]))
if self.eval_render:
render_image('FrontRGB', info_t['FrontRGB'])
modified_photo = np.array(info_t['FrontRGB'])
cv2.putText(modified_photo, 'steer: {}'.format(round(info_t['a_t'][0], 3)), (220, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
(0, 0, 0), 1)
cv2.putText(modified_photo, 'throttle-brake: {}'.format(round(info_t['a_t'][1] - info_t['a_t'][2], 3)), (220, 110),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 0), 1)
cv2.putText(modified_photo, 'lateral command: {}'.format(self.lat_cmd2text[lat_command]),
(220, 130), cv2.FONT_HERSHEY_SIMPLEX, 0.8, self.lat_cmd2color[lat_command], 1)
cv2.putText(modified_photo, 'longitude command {}'.format(self.lon_cmd2text[lon_command]),
(220, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.8, self.lon_cmd2color[lon_command], 1)
video.append(modified_photo)
s_t = s_t1
if done:
break
# judgement of angle and distance
file_path = './destination/scene%d_branch%d_pose%d.txt' % (
scene['scene_id'], scene['branch'], pose)
assert os.path.exists(file_path), "Destination file does exist on disk !!"
with open(file_path) as f:
tmp = f.readline().split(' ')
expert_location = list(map(float, tmp[:2]))
expert_yaw = float(tmp[-1])
self.env.res['dis_to_destination'] = m.sqrt((expert_location[0] - info_t['location'].x) ** 2 +
(expert_location[1] - info_t['location'].y) ** 2)
self.env.res['vertical_dist'] = abs(
-m.sin(m.pi / 180 * expert_yaw) * (expert_location[0] - info_t['location'].x) +
m.cos(m.pi / 180 * expert_yaw) * (expert_location[1] - info_t['location'].y))
self.env.res['delta_angle'] = (info_t['rotation'].yaw - expert_yaw + 180) % 360 - 180
self.env.res['tot_step'] = self.env.frame - self.env.start_frame
if self.env.res['tot_step'] == self.eval_steps:
self.env.res['time_out'] = True
if not self.env.res['collision'] and not self.env.res['lane_invasion'] and not self.env.res['time_out']:
# done is not due to collision/invasion/timeout
if self.env.res['wrong_direction']:
# drive to the wrong direction
self.env.res['success'] = False
else:
if self.env.res['vertical_dist'] > 1:
self.env.res['TooFar'] = True
if abs(self.env.res['delta_angle']) > 15:
self.env.res['TooMuchAngle'] = True
# NOTE: TooFar and TooMuchAngle can happen at the same time
if self.env.res['TooFar'] or self.env.res['TooMuchAngle']:
self.env.res['success'] = False
poor_dis_or_angle = 1.0 if self.env.res['TooMuchAngle'] or self.env.res['TooFar'] else 0.0
success, collision, lane_invasion, time_out = float(self.env.res['success']), \
float(self.env.res['collision']), \
float(self.env.res['lane_invasion']), \
float(self.env.res['time_out'])
if self.eval_save > 0:
if self.store_success_only and not self.env.res['success']:
pass
else:
for item in tmp_buffer:
self.buffers.add(scene['branch'], item)
self.buffers.save_to_h5py(self.save_data)
return self.env.res, self.env.close(self.eval_steps), video
def evaluate_scene(self, scene_list):
episode_bk, scene_bk, pose_bk, branch_bk, trace_bk = [-1, -1, -1, -1, -1]
if self.breakpoint_path:
with open(self.breakpoint_path) as f:
episode_bk, scene_bk, pose_bk, branch_bk, trace_bk = f.read().split()
episode_bk = int(episode_bk)
scene_bk = int(scene_bk)
pose_bk = int(pose_bk)
branch_bk = int(branch_bk)
trace_bk = int(trace_bk)
self.trace_id = trace_bk
for scene_idx, scene_id in enumerate(scene_list):
if scene_idx < scene_bk: continue
configer = Configer(scene_id)
for pose in range(configer.poses_num()):
if scene_idx == scene_bk and pose < pose_bk: continue
for branch_idx, branch in enumerate(configer.branches(pose)):
if branch not in self.branch_list: continue
if scene_idx == scene_bk and pose == pose_bk and branch_idx < branch_bk: continue
scene = configer.scene_config(pose, branch)
if self.random_weather:
scene['weather'] = random.choice(self.weather_set)
res_list = OrderedDict()
for episode in range(self.iters):
if scene_idx == scene_bk and pose == pose_bk and branch_idx == branch_bk and episode < episode_bk: continue
print('# Evaluate scene_id = %d, pose = %d, branch = %d, Episode = %d / %d, Trace_id = %d' % (
scene_id, pose, branch, episode, self.iters, self.trace_id))
res, _, video = self.evaluate_episode(scene, pose)
self.trace_id = self.trace_id + 1
if res is None:
continue
print(res)
video_name = 'eval_scene%d_pose%d_branch%d_episode%d' % (scene_id, pose, branch, episode) + \
('_suc' if res['success'] else '') + ('_timeout' if res['time_out'] else '') + \
('_laneInv' if res['lane_invasion'] else '') + \
('_colli' if res['collision'] else '') + \
('_poorDisAngle' if res['TooFar'] or res['TooMuchAngle'] else '') + \
('_wrongDirection' if res['wrong_direction'] else '') + '.avi'
print("video length:", len(video))
video_write(os.path.join(self.csv_dir, video_name), video, size=(1500, 650), fps=15)
for (k, v) in res.items():
if not k in res_list:
res_list[k] = []
res_list[k].append(v)
with open(self.txt_path, 'a') as f:
if not self.txt_created:
self.txt_created = True
f.write('scene pose branch ')
for (k, v) in res.items():
f.write(k)
f.write(' ')
f.write('\n')
f.write('%d %d %d ' % (scene_id, pose, branch))
for (k, v) in res.items():
f.write(str(v))
f.write(' ')
f.write('\n')
f.close()
with open(os.path.join(self.csv_dir, 'breakpoint.txt'), 'w') as f:
f.write("{} {} {} {} {}".format(episode, scene_idx, pose, branch_idx, self.trace_id))
f.close()
self.update_metrics(scene_id, pose, branch, res_list)
def update_metrics(self, scene, pose, branch, res_list):
res_mean = OrderedDict([('scene', scene), ('pose', pose), ('branch', branch)])
for (k, v) in res_list.items():
res_mean[k] = np.mean(v)
if self.first_write:
create_csv(self.csv_path, list(res_mean.keys()))
self.first_write = False
write_csv(self.csv_path, list(res_mean.values()))
def parse_args():
parser = argparse.ArgumentParser(description="Evaluate one agent's performance in IntersectNav benchmark")
# --------------------------- Model related ----------------
parser.add_argument('--work_dir', default='.', type=str, help="working directory")
parser.add_argument('--model_path', default='', type=str, help='NN checkpoint path')
# --------------------------- Evaluation Configuration ----------------
parser.add_argument('--branch_list', nargs='+', type=int, required=True,
help='evaluating task branches, (left turn|straight|right turn) (-1|0|1)')
parser.add_argument('--scenes', nargs='+', type=int, required=True, help='scene IDs for evaluating')
parser.add_argument('--control_agent', type=str, default='NN', choices=['NN', 'PID', 'PID_NOISE'],
help="agent options for control")
parser.add_argument('--iters', default=1, type=int, help='evaluate episodes')
parser.add_argument('--eval_steps', default=1000, type=int, help='maximum env steps')
parser.add_argument('--eval_render', default=False, action='store_true', help='render image')
parser.add_argument('--store_success_only', default=False, action='store_true',
help='only store data of successful episodes')
parser.add_argument('--eval_save', default=-1, type=int, help='save (s_t, a_t, ...) pairs per certain interval')
# --------------------------- CARLA simulator configuration ----------------
parser.add_argument('--port', default=2000, type=int, help='carla host port')
parser.add_argument('--random_weather', default=False, action="store_true", help="random weather")
parser.add_argument('--new_weather', default=False, action="store_true", help="use new weathers")
# --------------------------- Optional ---------------------------
parser.add_argument('--gpu_id', default='0', type=str, help='gpu ID')
parser.add_argument('--breakpoint', default='', type=str, help='evaluation breakpoint for continue')
args = parser.parse_args()
assert os.path.exists(args.work_dir), "work directory %s does not exist!" % args.work_dir
if args.model_path:
assert os.path.exists(args.model_path), "model %s does not exist!" % args.model_path
return args
def main():
args = parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
if torch.cuda.is_available():
print("=================== Using GPU, device count: {} =================".format(torch.cuda.device_count()))
device = torch.device('cuda')
else:
print("=================== Using CPU =======================")
device = torch.device('cpu')
model = None
'''
# complete the following example code if u wants to evaluate neural network agent
# e.g.
# import my_model
# model = my_model(*args, **argvs).to(device)
# load from checkpoint
# model.load_state_dict(args.model_path)
# model.eval()
'''
print('[INFO]: Start evaluation on scenes:', args.scenes, ' and branches: ', args.branch_list)
evaluator = Evaluator(args, model, device)
evaluator.evaluate_scene(scene_list=args.scenes)
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print('\nExit by user.')
finally:
print('\nExit.')