-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcarla97_env.py
270 lines (210 loc) · 8.76 KB
/
carla97_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import glob
import os
import sys
import random
import numpy as np
import math as m
import csv
from PIL import Image
from collections import OrderedDict
try:
sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % (
sys.version_info.major,
sys.version_info.minor,
'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])
except IndexError:
pass
import carla
from env.ego_car import EgoCar
from env.surroundings import Vehicles, Walkers
from env.configer import *
import queue
from env.utils import Waypoints, get_weather, get_area, INSIDE, get_task_type
from env.utils import FPS, draw_area, render_LIDAR, pre_process_lidar
import signal
from contextlib import contextmanager
class TimeoutException(Exception): pass
@contextmanager
def time_limit(seconds):
def signal_handler(signum, frame):
raise TimeoutException
signal.signal(signal.SIGALRM, signal_handler)
signal.alarm(seconds)
try:
yield
finally:
signal.alarm(0)
class Env:
def __init__(self, port, debug=False, town='Town03'):
print('# Initializing Env 0.9.7')
self.client = carla.Client("localhost", port) # connect to server
self.client.set_timeout(4.0)
self.client.load_world(town)
self.world = self.client.get_world()
self._settings = self.world.get_settings()
try:
with time_limit(10):
self.world.apply_settings(carla.WorldSettings( # set synchronous mode
no_rendering_mode=False,
synchronous_mode=True,
fixed_delta_seconds=1. / FPS))
except TimeoutException:
print("Error happened: apply carla settings.")
self.success = False
else:
self.success = True
self.waypoints = Waypoints(os.path.join(os.path.dirname(__file__), 'waypoint_' + town[4:] + '.csv'))
if debug:
print('# waypoints number = ', self.waypoints.cnt)
self.waypoints.render(self.world.debug)
self.ego_car = self.vehicles = self.walkers = None
print("Done.")
def reset(self, scene, debug=False, draw_area=False, manual_device=False):
self.scene = scene
self.area = get_area(self.scene)
self.world.set_weather(get_weather(self.scene['weather']))
self.ego_car = EgoCar(self.world, self.client, self.scene, self.waypoints, manual_device)
self.vehicles = Vehicles(self.world, self.client, self.scene, self.ego_car)
self.walkers = Walkers(self.world, self.client, self.scene, self.waypoints, self.ego_car)
if debug:
spector = self.waypoints.get_transform(scene['ped_center'])
spector.location.z = 30
spector.rotation.pitch = -90
self.world.get_spectator().set_transform(spector)
self.vehicles.start()
self.walkers.start()
for _ in range(self.scene['Wait_ticks']):
self.world.tick()
self.ego_car.set_sensors() # sensor: camera, Lidar, collison, lane invasion, info
self.frame = self.start_frame = self.world.tick()
self.reset_metrics()
data = self.ego_car.get_sensors(self.frame)
state = self.get_state(data)
info = self.get_info(data, state)
return state, info
def reset_metrics(self):
self.dict = OrderedDict()
self.res = self.dict
self.res['success'] = False
self.res['time_out'] = False
self.res['lane_invasion'] = False
self.res['collision'] = False
self.res['TooFar'] = False
self.res['TooMuchAngle'] = False
self.res['invasion_time'] = 0
self.res['total_ego_jerk'] = 0
# self.res['mean_ego_jerk'] = 0.0
self.res['total_other_jerk'] = 0
# self.res['mean_other_jerk'] = 0.0
self.res['total_min_dis'] = 0.0
# self.res['mean_min_dis'] = 0.0
self.res['dis_to_destination'] = 0
self.res['vertical_dist'] = 0
self.res['delta_angle'] = 0
self.res['wrong_direction'] = False
def step(self, action, lateral, longitude):
# TODO: judge the dimension of action; if dim = 3, the following code should be modified
assert action.shape == (2,) or action.shape == (3,)
if action.shape == (2,):
steer = np.clip(action[0], -1.0, 1.0)
throttle = np.clip(action[1], 0.0, 1.0) if action[1] > 0.0 else 0.0
brake = np.clip(abs(action[1]), 0.0, 1.0) if action[1] < 0.0 else 0.0
elif action.shape == (3,):
steer = np.clip(action[0], -1.0, 1.0)
throttle = np.clip(action[1], 0.0, 1.0)
brake = np.clip(action[2], 0.0, 1.0)
else:
raise NotImplementedError
control = carla.VehicleControl(steer=steer, throttle=throttle, brake=brake, reverse=False)
self.ego_car.step(control, lateral, longitude)
self.vehicles.step()
self.walkers.step()
self.frame = self.world.tick()
data = self.ego_car.get_sensors(self.frame)
state = self.get_state(data)
info = self.get_info(data, state)
reward, done, error = self.get_reward_done(data, info) # update self.res
return state, reward, done, info, error
def get_state(self, data, debug=False):
"""return (image, lidar, measure, command)"""
rgb = data['FrontRGB']
rgb = rgb[115: 510, :]
rgb = np.array(Image.fromarray(rgb).resize((200, 88)))
points = data['Lidar'][0]
lidar, lidar_raw = pre_process_lidar(points)
if debug:
render_LIDAR(points, data['Lidar'][1], self.world.debug)
measure = []
measure.append(data['speed'] / 30.0)
measure.append(data['min_dis'])
measure.append(data['angle_diff'] / 1.57)
measure.append(data['dis_diff'])
measure = np.array(measure)
command = data['command']
location = [data['location'].x, data['location'].y, data['location'].z]
rotation = [data['rotation'].pitch, data['rotation'].roll, data['rotation'].yaw]
self.res['total_min_dis'] += abs(data['min_dis'])
return (rgb, lidar, measure, command, location, rotation)
def get_info(self, data, state):
info = {}
info['FrontRGB'] = data['FrontRGB']
info['a_t'] = [data['control'].steer, data['control'].throttle, data['control'].brake]
info['location'] = data['location']
info['rotation'] = data['rotation']
return info
def get_reward_done(self, data, info):
reward = []
done = False
error = 0
reward.append(data['Collision'][0] > 0.0)
reward.append(len(data['LaneInvasion']) > 0)
if data['Collision'][0] > 0.0:
done = True
error = 1 # collision
self.res['collision'] = True
if len(data['LaneInvasion']) > 0:
self.res['invasion_time'] += 1
tolerance = 5 if self.scene['branch'] == 0 else 10
if self.res['invasion_time'] >= tolerance: # lane invasion for too many times
done = True
# error = 2 # lane invasion
self.res['lane_invasion'] = True
error = 2
reward.append(0) # don't success
if not INSIDE(data['location'], self.area):
done = True
task_type = get_task_type(data['location'], self.area, self.scene['task_type'])
if self.scene['branch'] != task_type:
error = 3 # go through the crossing in wrong direction
self.res['wrong_direction'] = True
else:
self.res['success'] = True
reward[-1] = 1 # success
# Comfort
if abs(info['a_t'][0]) > 0.4:
self.res['total_ego_jerk'] += 1
if abs(info['a_t'][1]) > 0.9:
self.res['total_ego_jerk'] += 1
self.res['total_other_jerk'] += self.walkers.get_disruption()
return np.array(reward), done, error # rwd: (3,), done: bool
def get_rule_based_control(self):
return self.ego_car.get_pid_control()
def destroy(self):
for x in [self.vehicles, self.walkers, self.ego_car]:
if x:
x.destroy()
self.ego_car = self.vehicles = self.walkers = None
def close(self, expected_end_steps):
self.destroy()
self.res['tot_step'] = self.frame - self.start_frame
if self.res['tot_step'] == expected_end_steps:
self.res['time_out'] = True
return self.res
def draw_point(self, end):
debug = self.world.debug
location = ['loc_x', 'loc_y', 'loc_z']
x, y, z = self.waypoints.locs[end]
loc = carla.Location(x, y, z)
debug.draw_point(loc, size=1, life_time=8, persistent_lines=True)
def __del__(self):
self.destroy()