-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmulti_exponent.erl
334 lines (306 loc) · 11 KB
/
multi_exponent.erl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
-module(multi_exponent).
-export([doit/2, me3/3, simple_exponent/3,
test/1]).
det_pow(0, _) -> 0;
det_pow(_, 0) -> 1;
det_pow(A, 1) -> A;
det_pow(A, N) when ((N rem 2) == 0) ->
det_pow(A*A, N div 2);
det_pow(A, N) when N > 1 ->
A*det_pow(A, N-1).
%break a 256-bit little endian number into Many chunks.
%chunkify(R, C, Many) ->
% chunkify2(R, C, Many).
chunkify(_, _, 0) -> [];
chunkify(R, C, Many) ->
[(R rem C)|
chunkify(R div C, C, Many-1)].
matrix_diagonal_flip([[]|_]) -> [];
matrix_diagonal_flip(M) ->
Col = lists:map(fun(X) -> hd(X) end, M),
Tls = lists:map(fun(X) -> tl(X) end, M),
[Col|matrix_diagonal_flip(Tls)].
remove_zero_terms([], [], A, B) ->
{lists:reverse(A), lists:reverse(B)};
%remove_zero_terms([0|R], [_|G], A, B) ->
% remove_zero_terms(R, G, A, B);
remove_zero_terms([<<0:256>>|R], [_|G], A, B) ->
remove_zero_terms(R, G, A, B);
remove_zero_terms(R, G, A, B) ->
remove_zero_terms(
tl(R), tl(G), [hd(R)|A], [hd(G)|B]).
range(X, X) -> [X];
range(A, B) when A < B ->
[A|range(A+1, B)].
simple_exponent(A, B) ->
simple_exponent(A, B, ed:extended_zero()).
simple_exponent([], [], A) -> A;
simple_exponent(
[R|RT], %256 bit montgomery encoded numbers
[G|GT], %encoded eniels points
Acc) -> %encoded point
%e_add(extended, eniels)
%e_mul_long(eniels, exponent)%exponent is a 256 bit little endian number in binary.
A2 = ed:e_add(ed:e_mul2(G, R), Acc),
%A2 = fq:e_add(fq:e_mul2(G, R), Acc),
%A2 = fq:e_add(fq:e_mul_long(G, (R)), Acc2),
simple_exponent(RT, GT, A2).
doit(
Rs0, %256 bit mongomery encoded numbers
Gs0 %extended point
) ->
{Rs1, Gs} =
remove_zero_terms(Rs0, Gs0, [], []),
if
(length(Rs1) < 2) ->
simple_exponent(
Rs1, Gs, ed:extended_zero());
true ->
multi_exponent2(Rs1, Gs)
end.
bucketify([], BucketsETS, [], ManyBuckets) ->
%io:fwrite(Buckets),
%T = tuple_to_list(Buckets),
T = lists:map(
fun(N) ->
X = ets:lookup(BucketsETS, N),
Z = case X of
[] -> ed:extended_zero();
[{_, Y}] -> Y
end,
false = (Z == error),
Z
end, range(1, ManyBuckets)),
T2 = lists:reverse(T),
%T2 = T,
%io:fwrite("bucketify part 2 \n"),
%io:fwrite({size(hd(T2)), size(hd(tl(T2)))}),
bucketify3(T2);
%bucketify2(tl(T2), hd(T2), hd(T2));
bucketify([0|T], BucketsETS, [_|Gs],
ManyBuckets) ->
bucketify(T, BucketsETS, Gs, ManyBuckets);
bucketify([BucketNumber|T], BucketsETS,
[G|Gs], ManyBuckets) ->
%to calculate each T_i.
%6*G1 + 2*G2 + 5*G3 ... 6th, then 2nd, then 5th buckets.
%(2^C)-1 buckets in total.
%Put a list of the Gs into each bucket.
BucketETS0 = ets:lookup(
BucketsETS, BucketNumber),
Bucket2 =
case BucketETS0 of
[] -> G;
[{_, X}] ->
ed:e_add(X, G)
end,
if
(Bucket2 == error) ->
{_, X2} = hd(BucketETS0),
io:fwrite({size(X2), size(G),
X2, G});
true -> ok
end,
ets:insert(BucketsETS, {BucketNumber, Bucket2}),
bucketify(T, BucketsETS, Gs, ManyBuckets).
bucketify3(T) ->
%T is a list of extended points.
bucketify2(tl(T), hd(T), hd(T)).
bucketify2([], _L, T) -> T;
bucketify2([S|R], L, T) ->
%for each bucket, sum up the points inside. [S7, S6, S5, ...
%T_i = S1 + 2*S2 + 3*S3 ... (this is another multi-exponent. a simpler one this time.)
%compute starting at the end. S7 + (S7 + S6) + (S7 + S6 + S5) ...
%todo. maybe simplify, multiply, simplify and add? something like that should be faster if there are lots of buckets.
L2 = ed:e_add(L, S),
T2 = ed:e_add(L2, T),
bucketify2(R, L2, T2).
multi_exponent2([], []) ->
%fq:e_zero();
ed:extended_zero();
multi_exponent2(Rs0, Gs)
when is_binary(hd(Rs0)) ->
Rs = lists:map(fun(X) -> fr:decode(X) end,
Rs0),
multi_exponent2(Rs, Gs);
multi_exponent2(Rs, Gs) ->
% io:fwrite({Rs, Gs}),
C0 = floor(math:log(length(Rs))/math:log(2))-2,
C1 = min(C0, 16),
C = max(1, C1),%how many bits per chunk
%C = max(12, C1),%how many bits per chunk
F = det_pow(2, C),%this is how many buckets we have, and is the constant factor between elements in a bucket.
%write each integer in R in binary. partition the binaries into chunks of C bits.
B = 256,
R_chunks =
lists:map(
fun(R) -> L = chunkify(
R, F, 1+(B div C)),
lists:reverse(L)
end, Rs),
Ts = matrix_diagonal_flip(R_chunks),
%Now the problem has been broken into 256/C instances of multi-exponentiation.
%each multi-exponentiation has length(Gs) parts. What is different is that instead of the exponents having 256 bits, they only have C bits. each multi-exponentiation makes [T1, T2, T3...]
%Each row is an instance of a multi-exponential problem, with C-bit exponents. We will bucketify each of these rows.
Ss = lists:map(
fun(X) ->
BucketsETS =
ets:new(buckets, [set]),%this ETS database has constant access time reading and editing. It is indexed by an integer, from 1 to F.
Result =
bucketify(X, BucketsETS,
Gs, F),
ets:delete(BucketsETS),
false = (error == Result),
Result
end, Ts),
me3(Ss, ed:extended_zero(),
<<F:256/little>>).
me3([H], A, _) ->
ed:e_add(H, A);
me3([H|T], A, F) ->
X = ed:e_add(A, H),
X2 = ed:e_mul(X, F),
if
(X == error) -> io:fwrite({me3, one, A, H});
(X2 == error) -> io:fwrite({me3, two, X, F});
true -> ok
end,
me3(T, X2, F).
test(0) ->
success = test(7),
G = ed:affine2extended(ed:gen_point()),
%normal multiplication first
A = ed:e_add(G, G),
A2 = ed:e_mul2(G, fr:encode(2)),
true = ed:e_eq(A, A2),
B = ed:e_add(A, G),
B2 = ed:e_mul2(G, fr:encode(3)),
true = ed:e_eq(B, B2),
Z = 8589934592,
B3 = ed:e_mul2(G, fr:encode(Z)),
true = ed:e_eq(
G,
multi_exponent2([fr:encode(1)], [G])),
true = ed:e_eq(ed:extended_zero(),
multi_exponent2([], [])),
true = ed:e_eq(ed:extended_zero(),
multi_exponent2([fr:encode(0)],
[G])),
true = ed:e_eq(
G,
multi_exponent2([fr:encode(1)], [G])),
true = ed:e_eq(G,
multi_exponent2(
[fr:encode(1), fr:encode(0)],
[G, G])),
true = ed:e_eq(multi_exponent2(
[fr:encode(1), fr:encode(1)],
[G, G]),
A),
true = ed:e_eq(multi_exponent2([fr:encode(2)],
[G]),
A),
true = ed:e_eq(multi_exponent2(
[fr:encode(1), fr:encode(1)],
[G, G]),
A),
true = ed:e_eq(multi_exponent2(
[fr:encode(2)],
[G]),
A),
true = ed:e_eq(multi_exponent2(
[fr:encode(4)],
[G]),
ed:e_mul2(G, fr:encode(4))),
true = ed:e_eq(doit(
[fr:encode(1), fr:encode(4)],
[G, G]),
ed:e_mul2(G, fr:encode(5))),
%io:fwrite("32 bytes of zero\n"),
%Z = basics:rlpow(10, 32, 9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999),
Z = basics:rlpow(2, 33, 1000000000000000000000000000000000000000),
Z = 8589934592,
true = ed:e_eq(simple_exponent(fr:encode([Z, 1, 1]),
[G, G, G]),
simple_exponent(fr:encode([Z+1, 1]),
[G, G])),
true = ed:e_eq(multi_exponent2(fr:encode([Z, 1, 1]),
[G, G, G]),
multi_exponent2(fr:encode([Z+1, 1]),
[G, G])),
Big = 3705093086744360691065964547167704750793463218034549685405621849768160725598,
true = ed:e_eq(
simple_exponent(fr:encode([Big, 1, 1, 1]),
[G, G, G, G]),
simple_exponent(fr:encode([Big+3]),
[G])),
true = ed:e_eq(
multi_exponent2(fr:encode([Big, 1, 1, 1]),
[G, G, G, G]),
multi_exponent2(fr:encode([Big+3]),
[G])),
success;
test(1) ->
%testing bucketify3. (S7*7 + S6*6 + S5*5 + ...)
Extended = ed:affine2extended(ed:gen_point()),
Zero = ed:extended_zero(),
true = ed:e_eq(bucketify3([Extended, Zero]),
ed:e_mul2(Extended, fr:encode(2))),
success;
test(3) ->
G = ed:affine2extended(ed:gen_point()),
F = fr:encode(4),
R = multi_exponent2([F], [G]),
G2 = ed:e_add(G, G),
G4 = ed:e_add(G2, G2),
{
G4,
ed:e_mul2(G, F),
R,
ed:e_eq(R, ed:e_mul2(G, F))
};
test(5) ->
G = ed:gen_point(),
true =ed:e_eq(multi_exponent2(
[fr:encode(4)],
[G]),
ed:e_mul2(G, fr:encode(4))),
success;
test(6) ->
G = ed:gen_point(),
H = ed:gen_point(),
B = [fr:encode(400), fr:encode(555)],
true = ed:e_eq(multi_exponent2(B, [G, H]),
simple_exponent(
B, [G, H],
ed:extended_zero())),
success;
test(7) ->
%test that using 32 bits of zeros doesn't break elliptic multiplication
G = ed:gen_point(),
io:fwrite("test 31\n"),
Z0 = basics:rlpow(2, 31, 9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999),
B0 = ed:e_mul2(G, fr:encode(Z0)),
io:fwrite("next mul\n"),
Bl10 = ed:e_mul2(G, fr:encode(Z0-1)),
true = ed:e_eq(B0, ed:e_add(Bl10, G)),
io:fwrite("test 32\n"),
Z = basics:rlpow(2, 32, 9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999),
B = ed:e_mul2(G, fr:encode(Z)),
timer:sleep(50),
io:fwrite("next mul\n"),
Bl1 = ed:e_mul2(G, fr:encode(Z-1)),
timer:sleep(50),
true = ed:e_eq(B, ed:e_add(Bl1, G)),
success;
test(8) ->
%elliptic multiplication doesn't break on big numbers.
G = ed:gen_point(),
Eb = 328490237808490508376962983701062532245597166313109197768658377164801760055,
Es = 200990237808490508376962983701062532245597166313109197768658377164801760055,
%Es = 127990237808490508376962983701062532245597166313109197768658377164801760055,
Gs = ed:e_mul2(G, fr:encode(Es)),
Gb = ed:e_mul2(G, fr:encode(Eb)),
Gd = ed:e_mul2(G, fr:encode(Eb - Es)),
true = ed:e_eq(Gb, ed:e_add(Gs, Gd)),
success.