forked from VividLe/Online-Action-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
168 lines (130 loc) · 5.68 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import datetime
import json
import time
from pathlib import Path
import torch
from torch.utils.data import DataLoader
import loss as utl
from misc import init as cfg
from Dataload.ThumosDataset import THUMOSDataSet
from loss.evaluate import Colar_evaluate
from model.ColarModel import Colar_dynamic, Colar_static
import torch.nn.functional as F
import numpy as np
from misc.utils import backup_code
def train_one_epoch(model_dynamic,
model_static,
criterion,
data_loader, optimizer,
device, max_norm):
model_static.train()
model_dynamic.train()
criterion.train()
losses = 0
i = 0
for camera_inputs, enc_target in data_loader:
inputs = camera_inputs.to(device)
enc_target = enc_target.argmax(dim=-1)
target = enc_target.to(device=device)
# todo
optimizer.zero_grad()
enc_score_static = model_static(inputs[:, -1:, :], device)
loss_static = criterion(enc_score_static, target[:, -1:], 'CE')
enc_score_dynamic = model_dynamic(inputs)
loss_dynamic = criterion(enc_score_dynamic[:, :, -1:], target[:, -1:], 'CE')
loss_KL = criterion(enc_score_dynamic[:, :21, -1:], enc_score_static, 'KL')
loss = loss_static + loss_dynamic + loss_KL
loss.backward()
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model_static.parameters(), max_norm)
torch.nn.utils.clip_grad_norm_(model_dynamic.parameters(), max_norm)
optimizer.step()
losses += loss
i = i + 1
print('\r train-------------------{:.4f}%'.format((i / 1415) * 100), end='')
return losses / i, losses
def evaluate(model_dynamic,
model_static,
data_loader, device):
model_static.eval()
model_dynamic.eval()
score_val_x = []
target_val_x = []
i = 0
for camera_inputs, enc_target in data_loader:
inputs = camera_inputs.to(device)
target = enc_target.to(device)
target_val = target[:, -1:, :21]
with torch.no_grad():
enc_score_dynamic = model_dynamic(inputs)
enc_score_static = model_static(inputs[:, -1:, :], device)
enc_score_static = enc_score_static.permute(0, 2, 1)
enc_score_static = enc_score_static[:, :, :21]
enc_score_dynamic = enc_score_dynamic.permute(0, 2, 1)
enc_score_dynamic = enc_score_dynamic[:, -1:, :21]
score_val = enc_score_static * 0.3 + enc_score_dynamic * 0.7
score_val = F.softmax(score_val, dim=-1)
score_val = score_val.contiguous().view(-1, 21).cpu().numpy()
target_val = target_val.contiguous().view(-1, 21).cpu().numpy()
score_val_x += list(score_val)
target_val_x += list(target_val)
print('\r train-------------------{:.4f}%'.format((i / 1600) * 100), end='')
i += 1
all_probs = np.asarray(score_val_x).T
all_classes = np.asarray(target_val_x).T
print(all_probs.shape, all_classes.shape)
results = {'probs': all_probs, 'labels': all_classes}
return results
def main(args):
log_file = backup_code(args.exp_name)
seed = args.seed + cfg.get_rank()
cfg.set_seed(seed)
device = torch.device('cuda:' + str(args.cuda_id))
model_static = Colar_static(args.input_size, args.numclass, device, args.kmean)
model_dynamic = Colar_dynamic(args.input_size, args.numclass)
model_dynamic.apply(cfg.weight_init)
model_dynamic.to(device)
model_static.apply(cfg.weight_init)
model_static.to(device)
criterion = utl.SetCriterion().to(device)
optimizer = torch.optim.Adam([
{"params": model_static.parameters()},
{"params": model_dynamic.parameters()}],
lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
dataset_train = THUMOSDataSet(flag='train', args=args)
dataset_val = THUMOSDataSet(flag='test', args=args)
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
pin_memory=True, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, pin_memory=True, num_workers=args.num_workers)
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
train_loss, loss = train_one_epoch(
model_dynamic,
model_static,
criterion, data_loader_train, optimizer, device, args.clip_max_norm)
lr_scheduler.step()
print('epoch:{}------loss:{}'.format(epoch, train_loss))
test_stats = evaluate(
model_dynamic,
model_static,
data_loader_val, device)
print('---------------Calculation of the map-----------------')
Colar_evaluate(test_stats, epoch, args.command, log_file)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if '__main__' == __name__:
args = cfg.parse_args()
with open(args.dataset_file, 'r') as f:
data_info = json.load(f)['THUMOS']
args.train_session_set = data_info['train_session_set']
args.test_session_set = data_info['test_session_set']
args.class_index = data_info['class_index']
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)