|
| 1 | +#-*- coding:utf-8-*- |
| 2 | + |
| 3 | +import torch |
| 4 | +from torch.utils.data import Dataset, DataLoader |
| 5 | + |
| 6 | +from moudle import LeNet |
| 7 | +from torchvision.datasets.mnist import MNIST |
| 8 | +import torchvision.transforms as transforms |
| 9 | +import time |
| 10 | + |
| 11 | +device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
| 12 | + |
| 13 | +batch_size=1 |
| 14 | +epoch_num=5 #2-0.8323, 5-0.9545 |
| 15 | +LR = 0.001 |
| 16 | + |
| 17 | +data_train = MNIST('../data/mnist', |
| 18 | + download=True, |
| 19 | + transform=transforms.Compose([ |
| 20 | + # transforms.Resize((32, 32)), |
| 21 | + transforms.ToTensor(), |
| 22 | + |
| 23 | + ])) |
| 24 | + |
| 25 | +data_test = MNIST('../data/mnist', |
| 26 | + train=False, |
| 27 | + download=True, |
| 28 | + transform=transforms.Compose([ |
| 29 | + |
| 30 | + #transforms.Resize((32, 32)), |
| 31 | + transforms.ToTensor()])) |
| 32 | + |
| 33 | + |
| 34 | + |
| 35 | +train_loader = DataLoader( |
| 36 | + dataset= data_train, #CustomDataset(), |
| 37 | + batch_size=batch_size, # 批大小 |
| 38 | + |
| 39 | + shuffle=True, # 是否随机打乱顺序 |
| 40 | + num_workers=8, # 多线程读取数据的线程数 |
| 41 | + ) |
| 42 | + |
| 43 | +test_loader = DataLoader( |
| 44 | + dataset= data_test, #CustomDataset(), |
| 45 | + batch_size=batch_size, # 批大小 |
| 46 | + |
| 47 | + shuffle=True, # 是否随机打乱顺序 |
| 48 | + num_workers=8, # 多线程读取数据的线程数 |
| 49 | + ) |
| 50 | + |
| 51 | + |
| 52 | +net = LeNet().to(device) |
| 53 | + |
| 54 | +opt = torch.optim.SGD(net.parameters(), lr=LR) |
| 55 | + |
| 56 | +loss_function = torch.nn.CrossEntropyLoss() |
| 57 | + |
| 58 | +def train(): |
| 59 | + net.train() |
| 60 | + for epoch in range(epoch_num): |
| 61 | + total_loss = 0 |
| 62 | + epoch_step = 0 |
| 63 | + tic = time.time() |
| 64 | + |
| 65 | + for batch_image, batch_label in train_loader: |
| 66 | + batch_image = batch_image.to(device) |
| 67 | + batch_label = batch_label.to(device) |
| 68 | + |
| 69 | + opt.zero_grad() |
| 70 | + output = net(batch_image) |
| 71 | + loss = loss_function(output, batch_label) |
| 72 | + |
| 73 | + total_loss += loss |
| 74 | + epoch_step += 1 |
| 75 | + |
| 76 | + loss.backward() |
| 77 | + opt.step() |
| 78 | + |
| 79 | + toc = time.time() |
| 80 | + print("one epoch does take approximately " + str((toc - tic)) + " seconds),average loss: " + str(total_loss/epoch_step)) |
| 81 | + |
| 82 | +#torch.save(net.state_dict(), "./moudle/moudle") |
| 83 | + |
| 84 | +def test(): |
| 85 | + net.eval() |
| 86 | + total_correct = 0 |
| 87 | + for batch_image, batch_label in test_loader: |
| 88 | + batch_image = batch_image.to(device) |
| 89 | + batch_label = batch_label.to(device) |
| 90 | + |
| 91 | + output = net(batch_image) |
| 92 | + |
| 93 | + pred = output.detach().max(1)[1] |
| 94 | + total_correct += pred.eq(batch_label.view_as(pred)).sum() |
| 95 | + |
| 96 | + print("total_correct:", float(total_correct) / len(data_test)) |
| 97 | + |
| 98 | + |
| 99 | + |
| 100 | +if __name__ == "__main__": |
| 101 | + train() |
| 102 | + test() |
| 103 | + |
0 commit comments