-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
264 lines (215 loc) · 9.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import numpy as np
import pandas as pd
import argparse
from models.MF import *
from models.FM import *
from models.AE import *
from data_load import *
from evaluate import *
import tensorflow as tf
import tensorflow_addons as tfa
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
tf.config.experimental.set_memory_growth(gpus[0], True)
except RuntimeError as e:
print(e)
def parse_args():
parser = argparse.ArgumentParser()
# train
parser.add_argument('--epochs', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--resample', action='store_true')
# data
parser.add_argument('--n_negatives', type=int, default=4)
# model
parser.add_argument('--model_name', type=str, default='NMF')
parser.add_argument('--emb_dim', type=int, default=16)
parser.add_argument('--hidden_layers', default='[128, 64]') # 늘려서 해보기
parser.add_argument('--att_dim', type=int, default=8)
parser.add_argument('--att_sizes', default='[16, 16]')
parser.add_argument('--att_heads', default='[4, 4]')
parser.add_argument('--n_cross_layers', type=int, default=2)
parser.add_argument('--cin_layers', default='[32, 32]')
parser.add_argument('--model_type', type=str, default='inner')
parser.add_argument('--activation', type=str, default='relu')
return parser.parse_args()
def get_model(args):
model_name = args.model_name
# MF
if model_name == 'GMF':
return GMF(args.num_users, args.num_items, args.emb_dim)
elif model_name == 'MLP':
return MLP(args.num_users, args.num_items, args.emb_dim, args.hidden_layers)
elif model_name == 'NMF':
return NMF(args.num_users, args.num_items, args.emb_dim, args.hidden_layers)
# FM
elif model_name == 'AFM':
return AFM(args.x_dims, args.emb_dim, args.att_dim)
elif model_name == 'AutoInt':
return AutoInt(args.x_dims, args.emb_dim, args.att_sizes, args.att_heads)
elif model_name == 'CDN':
return CDN(args.x_dims, args.emb_dim, args.n_cross_layers, args.hidden_layers, args.activation)
elif model_name == 'DeepFM':
return DeepFM(args.x_dims, args.emb_dim, args.hidden_layers)
elif model_name == 'PNN':
return PNN(args.x_dims, args.emb_dim, args.hidden_layers, args.model_type)
elif model_name == 'xDFM':
return xDFM(args.x_dims, args.emb_dim, args.cin_layers, args.hidden_layers, args.activation)
# AE
elif model_name == 'DAE':
return DAE(args.num_items, args.emb_dim, args.hidden_layers) # no activation is better
elif model_name == 'CDAE':
return CDAE(args.num_users, args.num_items, args.emb_dim, args.hidden_layers) # no activation is better
elif model_name == 'MultVAE':
return MultVAE(args.num_items, args.emb_dim, args.hidden_layers) # no activation is better
elif model_name == 'HVampVAE':
return HVampVAE(args.num_items, args.emb_dim, args.hidden_layers)
elif model_name == 'NeuralEASE':
return NeuralEASE(args.num_items)
elif model_name == 'VASP':
return VASP(args.num_items, args.emb_dim, args.hidden_layers)
else:
raise(ValueError('not available model'))
class ScoreCallback(tf.keras.callbacks.Callback):
def __init__(self):
self.hr_hist = []
self.ndcg_hist = []
def on_epoch_end(self, epoch, logs=None):
hr, ndcg = evaluate_model(self.model, test_ratings, test_negatives, history=history, is_ae=True)
self.hr_hist.append(np.mean(hr))
self.ndcg_hist.append(np.mean(ndcg))
print(np.mean(hr), np.mean(ndcg))
class AnnealCallback(tf.keras.callbacks.Callback):
def __init__(self, anneal_cap=0.3, anneal_step=1e-4):
super().__init__()
self.anneal_cap = anneal_cap
self.anneal_step = anneal_step
def on_train_batch_end(self, batch, logs=None):
self.model.anneal = min(self.anneal_cap, self.model.anneal+self.anneal_step)
if __name__=='__main__':
train = load_rating_file_as_matrix('./data/ml-1m.train.rating')
test_ratings = load_rating_file_as_list('./data/ml-1m.test.rating')
test_negatives = load_negative_file('./data/ml-1m.test.negative')
num_users, num_items = train.shape
args = parse_args()
print(args)
args.hidden_layers = eval(args.hidden_layers)
args.cin_layers = eval(args.cin_layers)
args.att_sizes = eval(args.att_sizes)
args.att_heads = eval(args.att_heads)
args.num_users = num_users
args.num_items = num_items
args.x_dims = [num_users, num_items]
# model
model = get_model(args)
model.compile(optimizer=tf.keras.optimizers.Adam(), loss=tf.losses.BinaryCrossentropy(from_logits=True))
# train
if args.model_name in ['DAE', 'HVampVAE']:
history = train.toarray()
score_callback = ScoreCallback()
hr, ndcg = evaluate_model(model, test_ratings, test_negatives, history=history, is_ae=True)
score_callback.hr_hist.append(np.mean(hr))
score_callback.ndcg_hist.append(np.mean(ndcg))
model.fit(
history,
batch_size = args.batch_size,
epochs = args.epochs,
shuffle = True,
callbacks = [score_callback],
verbose = 2
)
hr_hist = score_callback.hr_hist
ndcg_hist = score_callback.ndcg_hist
elif isinstance(model, NeuralEASE):
history = train.toarray()
model.compile(optimizer=tf.optimizers.Adam(), loss=tf.losses.BinaryCrossentropy())
score_callback = ScoreCallback()
hr, ndcg = evaluate_model(model, test_ratings, test_negatives, history=history, is_ae=True)
score_callback.hr_hist.append(np.mean(hr))
score_callback.ndcg_hist.append(np.mean(ndcg))
model.fit(
history,
batch_size = args.batch_size,
epochs = args.epochs,
shuffle = True,
callbacks = [score_callback],
verbose = 2
)
hr_hist = score_callback.hr_hist
ndcg_hist = score_callback.ndcg_hist
elif isinstance(model, CDAE): # user
history = train.toarray()
hr, ndcg = evaluate_model(model, test_ratings, test_negatives, history=history, is_ae=True)
score_callback = ScoreCallback()
score_callback.hr_hist.append(np.mean(hr))
score_callback.ndcg_hist.append(np.mean(ndcg))
users = np.arange(history.shape[0])
model.fit(
[users, history],
batch_size = args.batch_size,
epochs = args.epochs,
shuffle = True,
callbacks = [score_callback],
verbose = 2
)
hr_hist = score_callback.hr_hist
ndcg_hist = score_callback.ndcg_hist
elif isinstance(model, MultVAE):
history = train.toarray()
hr, ndcg = evaluate_model(model, test_ratings, test_negatives, history=history, is_ae=True)
score_callback = ScoreCallback()
score_callback.hr_hist.append(np.mean(hr))
score_callback.ndcg_hist.append(np.mean(ndcg))
model.fit(
history,
batch_size = args.batch_size,
epochs = args.epochs,
shuffle = True,
callbacks = [score_callback, AnnealCallback()],
verbose = 2
)
hr_hist = score_callback.hr_hist
ndcg_hist = score_callback.ndcg_hist
elif isinstance(model, VASP):
# focal loss !
model.compile(optimizer=tf.optimizers.Adam(), loss=tfa.losses.sigmoid_focal_crossentropy)
history = train.toarray()
hr, ndcg = evaluate_model(model, test_ratings, test_negatives, history=history, is_ae=True)
score_callback = ScoreCallback()
score_callback.hr_hist.append(np.mean(hr))
score_callback.ndcg_hist.append(np.mean(ndcg))
model.fit(
history,
batch_size = args.batch_size,
epochs = args.epochs,
shuffle = True,
callbacks = [score_callback],
verbose = 2
)
hr_hist = score_callback.hr_hist
ndcg_hist = score_callback.ndcg_hist
else: # MF, FM
hr_hist = []
ndcg_hist = []
user_inputs, item_inputs, labels = get_train_instances(train, args.n_negatives)
for _ in range(args.epochs):
hr, ndcg = evaluate_model(model, test_ratings, test_negatives)
hr_hist.append(np.mean(hr))
ndcg_hist.append(np.mean(ndcg))
model.fit(
[np.array(user_inputs), np.array(item_inputs)], np.array(labels),
batch_size = args.batch_size,
shuffle=True,
)
if args.resample:
user_inputs, item_inputs, labels = get_train_instances(train, args.n_negatives)
hr_hist.append(np.mean(hr))
ndcg_hist.append(np.mean(ndcg))
# save
res = pd.DataFrame(index=range(len(hr_hist)), columns=['hr', 'ndcg'])
res['hr'] = hr_hist
res['ndcg'] = ndcg_hist
res.to_csv(f'./scores/{args.model_name}.csv', index=False)
# TODO: save and load test
model.save_weights(f'./weights/{args.model_name}.h5')