-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
89 lines (78 loc) · 3 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
from models.AE import CDAE
import heapq
def evaluate_model(model, testRatings, testNegatives, history=None, K=10, is_ae=False, is_ease=False):
hits, ndcgs = [],[]
for idx in range(len(testRatings)):
user = testRatings[idx][0]
gtItem = testRatings[idx][1]
if is_ae:
user = testRatings[idx][0] if isinstance(model, CDAE) else None
(hr,ndcg) = eval_one_rating_ae(model, gtItem, testNegatives[idx], history[idx:idx+1], user=user, K=K)
elif is_ease:
(hr,ndcg) = eval_one_rating_ease(model, gtItem, testNegatives[idx], user=user, K=K)
else:
(hr,ndcg) = eval_one_rating(model, user, gtItem, testNegatives[idx], K)
hits.append(hr)
ndcgs.append(ndcg)
return (hits, ndcgs)
def eval_one_rating(model, user, gtItem, negatives, K):
items = negatives + [gtItem]
# Get prediction scores
map_item_score = {}
users = np.full(len(items), user, dtype = 'int32')
predictions = model.predict([users, np.array(items)],
batch_size=100, verbose=0)
for i in range(len(items)):
item = items[i]
map_item_score[item] = predictions[i]
items.pop()
ranklist = heapq.nlargest(K, map_item_score, key=map_item_score.get)
hr = getHitRatio(ranklist, gtItem)
ndcg = getNDCG(ranklist, gtItem)
return (hr, ndcg)
def eval_one_rating_ae(model, gtItem, negatives, history, user=None, K=10):
items = negatives + [gtItem]
# Get prediction scores
map_item_score = {}
if user is not None:
users = users = np.full((1, 1), user, dtype = 'int32')
predictions = model.predict([users, history],
batch_size=100, verbose=0)
predictions = predictions[0][items]
else:
predictions = model.predict(history,
batch_size=100, verbose=0)
predictions = predictions[0][items]
for i in range(len(items)):
item = items[i]
map_item_score[item] = predictions[i]
items.pop()
ranklist = heapq.nlargest(K, map_item_score, key=map_item_score.get)
hr = getHitRatio(ranklist, gtItem)
ndcg = getNDCG(ranklist, gtItem)
return (hr, ndcg)
def eval_one_rating_ease(model, gtItem, negatives, user, K=10):
items = negatives + [gtItem]
# Get prediction scores
map_item_score = {}
predictions = model.predict_one_user(user, items)
for i in range(len(items)):
item = items[i]
map_item_score[item] = predictions[i]
items.pop()
ranklist = heapq.nlargest(K, map_item_score, key=map_item_score.get)
hr = getHitRatio(ranklist, gtItem)
ndcg = getNDCG(ranklist, gtItem)
return (hr, ndcg)
def getHitRatio(ranklist, gtItem):
for item in ranklist:
if item == gtItem:
return 1
return 0
def getNDCG(ranklist, gtItem):
for i in range(len(ranklist)):
item = ranklist[i]
if item == gtItem:
return np.log(2) / np.log(i+2)
return 0