-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain.py
180 lines (154 loc) · 6.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import torch
import torch.optim as optim
import shutil
import os
import sys
import argparse
import time
def parseArgs():
parser = argparse.ArgumentParser()
parser.add_argument('-m', default='hourglass', help='model file definition')
parser.add_argument('-bs',default=4, type = int, help='batch size')
parser.add_argument('-it', default=0, type = int, help='Iterations')
parser.add_argument('-lt', default=10, type = int, help = 'Loss file saving refresh interval (seconds)')
parser.add_argument('-mt', default=3000 , type = int, help = 'Model saving interval (iterations)')
parser.add_argument('-et', default=1000 , type = int, help = 'Model evaluation interval (iterations)')
parser.add_argument('-lr', default=1e-3 , type = float, help = 'Learning rate')
parser.add_argument('-t_depth_file', default='', help = 'Training file for relative depth')
parser.add_argument('-v_depth_file', default='' , help = 'Validation file for relative depth')
parser.add_argument('-rundir', default='' , help = 'Running directory')
parser.add_argument('-ep', default=10 , type = int , help = 'Epochs')
parser.add_argument('-start_from', default='' , help = 'Start from previous model')
parser.add_argument('-diw', default=False , type = bool , help = 'Is training on DIW dataset')
parser.add_argument('-optim', default='RMSprop', help = 'choose the optimizer')
g_args = parser.parse_args()
return g_args
def default_feval():
batch_input, batch_target = train_loader.load_next_batch(g_args.bs)
optimizer.zero_grad()
batch_output = g_model(batch_input)
batch_loss = g_criterion.forward(batch_output, batch_target)
batch_loss.backward()
# dloss_dx = g_criterion.backward(1.0)
# print(dloss_dx)
# batch_output.backward(dloss_dx.data)
optimizer.step()
return batch_loss.data[0]
def save_loss_accuracy(t_loss, t_WKDR, v_loss, v_WKDR):
_v_loss_tensor = torch.Tensor(v_loss)
_t_loss_tensor = torch.Tensor(t_loss)
_v_WKDR_tensor = torch.Tensor(v_WKDR)
_t_WKDR_tensor = torch.Tensor(t_WKDR)#It doesn't matter whether t_WKDR is a Tensor
_full_filename = os.path.join(g_args.rundir, 'loss_accuracy_record_period' + str(g_model.period) + '.h5')
if os.path.isfile(_full_filename):
os.remove(_full_filename)
myFile = h5py.File(_full_filename, 'w')
myFile.create_dataset('t_loss', data=_t_loss_tensor.numpy())
myFile.create_dataset('v_loss', data=_v_loss_tensor.numpy())
myFile.create_dataset('t_WKDR', data=_t_WKDR_tensor.numpy())
myFile.create_dataset('v_WKDR', data=_v_WKDR_tensor.numpy())
myFile.close()
def save_model(model, directory, current_iter, config):
# model.clearState()
model.config = config
torch.save(model, directory+'/model_period'+str(model.period)+'_'+str(current_iter)+'.pt')
def save_best_model(model, directory, config, iteration):
# model.clearState()
model.config = config
model.iter = iteration
torch.save(model, os.path.join(directory,'Best_model_period'+str(model.period)+'.pt'))
## main
g_args = parseArgs()
if g_args.diw:
exec(open('./DataLoader_DIW.py').read())#TODO
from validation_crit.validate_crit_DIW import *
else:
exec(open('./DataLoader.py').read())
from validation_crit.validate_crit1 import *
exec(open('load_data.py').read())
train_loader = TrainDataLoader()
valid_loader = ValidDataLoader()
if g_args.it == 0:
g_args.it = int(g_args.ep * (train_loader.n_relative_depth_sample)/g_args.bs)
# Run path
jobid = os.getenv('PBS_JOBID')
job_name = os.getenv('PBS_JOBNAME')
# assert(job_name is not None)
if g_args.rundir == '':
if jobid == '' or jobid is None:
jobid = 'debug'
else:
jobid = jobid.split('%.')[0]
g_args.rundir = os.path.join('/home/yifan/dump/depth_pytorch/results/',g_args.m, str(job_name))
# if os.path.exists(g_args.rundir):
# shutil.rmtree(g_args.rundir)
if not os.path.exists(g_args.rundir):
os.mkdir(g_args.rundir)
torch.save(g_args ,g_args.rundir+'/g_args.pt')
# Model
config = {}
# temporary solution
if g_args.m == 'hourglass':
from models.hourglass import *
if g_args.start_from != '':
# import cudnn
print(os.path.join(g_args.rundir, g_args.start_from))
g_model = torch.load(os.path.join(g_args.rundir , g_args.start_from))
if g_model.period is None:
g_model.period = 1
g_model.period += 1
config = g_model.config
else:
g_model = Model()
g_model.period = 1
# g_model.training()?
config['learningRate'] = g_args.lr
if get_criterion is None: #Todo
print("Error: no criterion specified!!!!!!!")
sys.exit(1)
get_depth_from_model_output = f_depth_from_model_output()
if get_depth_from_model_output is None:
print('Error: get_depth_from_model_output is undefined!!!!!!!')
sys.exit(1)
g_criterion = get_criterion()
g_model = g_model.cuda()
# g_params = g_model.parameters() # get parameters
if g_args.optim == 'RMSprop':
optimizer = optim.RMSprop(g_model.parameters(), lr=g_args.lr) #optimizer
print('Using RMSprop')
elif g_args.optim == 'Adam':
optimizer = optim.Adam(g_model.parameters(), lr=g_args.lr)
print('Using Adam')
feval = default_feval
best_valist_set_error_rate = 1.0
train_loss = []
train_WKDR = []
valid_loss = []
valid_WKDR = []
lfile = open(g_args.rundir+'/training_loss_period'+str(g_model.period)+'.txt', 'w')
total_loss = 0.0
for i in range(0,g_args.it):
# start = time.time()
running_loss = feval()
total_loss += running_loss
# end = time.time()
print(('loss = {}'.format(running_loss)))
lfile.write('loss = {}\n'.format(running_loss))
# print('time_used = {}'.format(end-start))
if i % g_args.mt == 0 and i!=0:
print('Saving model at iteration {}...'.format(i))
save_model(g_model, g_args.rundir, i, config)
if i % g_args.et == 0:
print('Evaluatng at iteration {}'.format(i))
train_eval_loss, train_eval_WKDR = evaluate(train_loader, g_model, g_criterion, 100) #TODO
valid_eval_loss, valid_eval_WKDR = evaluate(valid_loader, g_model, g_criterion, 100)
print("train_eval_loss:",train_eval_loss, "; train_eval_WKDR:" ,train_eval_WKDR)
print("valid_eval_loss:", valid_eval_loss, "; valid_eval_WKDR:", valid_eval_WKDR)
train_loss.append(running_loss)
valid_loss.append(valid_eval_loss)
train_WKDR.append(train_eval_WKDR)
valid_WKDR.append(valid_eval_WKDR)
save_loss_accuracy(train_loss, train_WKDR, valid_loss, valid_WKDR)
if best_valist_set_error_rate > valid_eval_WKDR:
best_valist_set_error_rate = valid_eval_WKDR
save_best_model(g_model, g_args.rundir, config, i)