-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
39 lines (27 loc) · 1.3 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from tensorflow.keras import backend as K
def recall_m(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision_m(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
def f1_m(y_true, y_pred):
precision = precision_m(y_true, y_pred)
recall = recall_m(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
def sens_m(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
false_negatives = K.sum(K.round(K.clip(y_true - y_pred, 0, 1)))
return true_positives / (true_positives + false_negatives + K.epsilon())
def spec_m(y_true, y_pred):
true_negatives = K.sum(K.round(K.clip(1 - (y_true + y_pred), 0, 1)))
false_positives = K.sum(K.round(K.clip(y_pred - y_true, 0, 1)))
return true_negatives / (false_positives + true_negatives + K.epsilon())
def g_mean_m(y_true, y_pred):
sens = sens_m(y_true, y_pred)
spec = spec_m(y_true, y_pred)
return K.sqrt(sens * spec)