-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_regression.cpp
97 lines (84 loc) · 2.56 KB
/
linear_regression.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#include <iostream>
#include <vector>
#include <cmath>
#include <fstream>
#include <sstream>
using namespace std;
struct DataPoint {
vector<double> features;
double target;
};
class LinearRegression {
private:
vector<double> weights;
double learningRate;
int epochs;
double predict(const vector<double>& features) {
double result = weights[0];
for (size_t i = 0; i < features.size(); ++i) {
result += weights[i + 1] * features[i];
}
return result;
}
public:
LinearRegression(double lr, int ep) : learningRate(lr), epochs(ep) {}
void train(const vector<DataPoint>& data) {
int n = data[0].features.size();
weights.assign(n + 1, 0.0);
for (int epoch = 0; epoch < epochs; ++epoch) {
vector<double> gradient(n + 1, 0.0);
for (const auto& dp : data) {
double error = predict(dp.features) - dp.target;
gradient[0] += error;
for (size_t i = 0; i < dp.features.size(); ++i) {
gradient[i + 1] += error * dp.features[i];
}
}
for (size_t i = 0; i < weights.size(); ++i) {
weights[i] -= (learningRate / data.size()) * gradient[i];
}
}
}
double evaluate(const vector<DataPoint>& data) {
double mse = 0.0;
for (const auto& dp : data) {
double error = predict(dp.features) - dp.target;
mse += error * error;
}
return mse / data.size();
}
void printModel() {
cout << "Linear Model: y = " << weights[0];
for (size_t i = 1; i < weights.size(); ++i) {
cout << " + " << weights[i] << "*x" << i;
}
cout << endl;
}
};
vector<DataPoint> loadDataset(const string& filename) {
vector<DataPoint> data;
ifstream file(filename);
string line;
while (getline(file, line)) {
stringstream ss(line);
vector<double> features;
double value;
while (ss >> value) {
features.push_back(value);
if (ss.peek() == ',') ss.ignore();
}
double target = features.back();
features.pop_back();
data.push_back({features, target});
}
return data;
}
int main() {
string filename = "dataset.csv";
vector<DataPoint> trainingData = loadDataset(filename);
LinearRegression model(0.01, 1000);
model.train(trainingData);
model.printModel();
cout << "Model Evaluation (MSE): " << model.evaluate(trainingData) << endl;
return 0;
}