forked from yule-BUAA/MergeLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_plms_glue.py
224 lines (193 loc) · 13.2 KB
/
train_plms_glue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
import sys
import time
import json
import copy
import logging
import argparse
from functools import partial
import torch
import torch.nn as nn
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModel, TrainingArguments
from utils.glue_data_loader import GLUEDataLoader, glue_data_metrics_map
from utils.utils import save_state_and_model_for_hf_trainer, load_state_and_model_for_hf_trainer
from utils.metrics import compute_metrics
from utils.customized_trainers import CustomizedTrainer
from models.models import MultiTaskModel
from utils.load_config import cache_dir
parser = argparse.ArgumentParser("Interface for training PLMs on glue")
parser.add_argument("--dataset_name", type=str, help="dataset to be used", default="cola", choices=["cola", "sst2", "mrpc", "stsb", "qqp", "mnli", "qnli", "rte"])
parser.add_argument("--auxiliary_dataset_name", type=str, help="auxiliary dataset to be used", default="cola", choices=["cola", "sst2", "mrpc", "stsb", "qqp", "mnli", "qnli", "rte"])
parser.add_argument("--language_model_name", type=str, default="roberta-base", help="name of the language model", choices=["bert-base-uncased", "roberta-base"])
parser.add_argument("--multitask_training", action="store_true", default=False, help="whether to use multitask training")
parser.add_argument("--batch_size", type=int, default=16, help="batch size")
parser.add_argument("--num_epochs", type=int, default=10, help="number of epochs")
parser.add_argument("--learning_rate", type=float, default=1e-5, help="learning rate")
parser.add_argument("--gpu", type=int, default=0, help="number of gpu to use")
parser.add_argument("--num_runs", type=int, default=5, help="number of runs")
try:
args = parser.parse_args()
args.device = f"cuda:{args.gpu}" if torch.cuda.is_available() and args.gpu >= 0 else "cpu"
except:
parser.print_help()
sys.exit()
if __name__ == "__main__":
test_metrics_all_runs = []
if args.multitask_training:
target_dataset_name = args.dataset_name
for run in range(args.num_runs):
if run == 0:
save_model_name = f"{args.language_model_name}_lr{args.learning_rate}"
else:
save_model_name = f"{args.language_model_name}_lr{args.learning_rate}_run{run}"
if args.multitask_training:
args.dataset_name = target_dataset_name
assert args.dataset_name != args.auxiliary_dataset_name, "names of target dataset and auxiliary dataset should be different!"
args.target_dataset_name = args.dataset_name
# put the target dataset name at end
args.dataset_name = f"{args.auxiliary_dataset_name}_{args.target_dataset_name}"
args.save_model_dir = f"./save_models/{args.dataset_name}/{save_model_name}"
# set up logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
os.makedirs(f"./save_logs/{args.dataset_name}/{save_model_name}", exist_ok=True)
# create file handler that logs debug and higher level messages
fh = logging.FileHandler(f"./save_logs/{args.dataset_name}/{save_model_name}/{str(time.time())}.log")
fh.setLevel(logging.INFO)
# create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.WARNING)
# create formatter and add it to the handlers
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
fh.setFormatter(formatter)
ch.setFormatter(formatter)
# add the handlers to logger
logger.addHandler(fh)
logger.addHandler(ch)
run_start_time = time.time()
logger.info(f"********** Run starts. **********")
logger.info(f"configuration is {args}")
try:
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=os.path.join(cache_dir, args.language_model_name))
except:
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=args.language_model_name, cache_dir=cache_dir)
glue_data_loader = GLUEDataLoader(tokenizer=tokenizer)
if args.multitask_training:
dataset_names = [args.auxiliary_dataset_name, args.target_dataset_name]
multi_train_datasets, multi_val_datasets, multi_test_datasets, datasets_num_labels = \
glue_data_loader.load_multitask_datasets(dataset_names=dataset_names, train_split_ratio_for_val=0.1, max_seq_length=128)
try:
base_model = AutoModel.from_pretrained(pretrained_model_name_or_path=os.path.join(cache_dir, args.language_model_name)).to(args.device)
except:
base_model = AutoModel.from_pretrained(pretrained_model_name_or_path=args.language_model_name, cache_dir=cache_dir).to(args.device)
headers = nn.ModuleDict()
for dataset_name, dataset_num_labels in zip(dataset_names, datasets_num_labels):
headers[dataset_name] = nn.Linear(in_features=base_model.config.hidden_size, out_features=dataset_num_labels)
model = MultiTaskModel(base_model=base_model, headers=headers)
if os.path.exists(os.path.join(args.save_model_dir, "trainer_state.json")):
model, _ = load_state_and_model_for_hf_trainer(model=model, load_model_dir=args.save_model_dir, map_location="cpu")
model = model.to(args.device)
training_args = TrainingArguments(
output_dir=args.save_model_dir, # save model directory
learning_rate=args.learning_rate, # learning rate
num_train_epochs=args.num_epochs, # total # of training epochs
per_device_train_batch_size=args.batch_size, # batch size per device during training
per_device_eval_batch_size=args.batch_size, # batch size for evaluation
warmup_ratio=0.06, # warmup first 6% of training steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
evaluation_strategy="epoch", # evaluate at per epoch
load_best_model_at_end=True, # load the best model after training
save_strategy="epoch", # strategy for saving models
metric_for_best_model="averaged_scores", # specify the metric to compare two different models
greater_is_better=True, # better models should have a greater metric
label_names=["dataset_ids", "labels"] # set label names, we use dataset_ids to retrieve ids of datasets,
# this makes Trainer's _signature_columns contain "dataset_ids"
)
logger.info(f"model -> {model}")
trainer = CustomizedTrainer(
model=model, # model to be trained
args=training_args, # training arguments
train_dataset=multi_train_datasets, # training dataset
eval_dataset=multi_val_datasets, # evaluation dataset
compute_metrics=partial(compute_metrics, dataset_names=dataset_names), # function for computing metrics
tokenizer=tokenizer, # tokenizer
use_multitask_setting=True # use multitask setting
)
if not os.path.exists(os.path.join(args.save_model_dir, "trainer_state.json")):
trainer.train()
# save the state and model for trainer
save_state_and_model_for_hf_trainer(trainer=trainer)
logger.info(f"get final performance on datasets {dataset_names}...")
test_metrics = trainer.evaluate(eval_dataset=multi_test_datasets)
for key, value in copy.deepcopy(test_metrics).items():
if isinstance(value, list):
for each_dataset_metric in value:
dataset_name = each_dataset_metric['dataset_name']
metric_name = glue_data_metrics_map[dataset_name]
metric_value = each_dataset_metric[metric_name]
test_metrics[f"{dataset_name}_{metric_name}"] = metric_value
logger.info(f"test performance on dataset {dataset_name}, {metric_name}: {float(f'{metric_value:.4f}')}")
test_metrics = {k: float(f"{v:.4f}") if isinstance(v, float) else v for k, v in test_metrics.items()}
logger.info(f"averaged test performance: {test_metrics}")
else:
train_dataset, val_dataset, test_dataset, num_labels = glue_data_loader.load_dataset(dataset_name=args.dataset_name,
train_split_ratio_for_val=0.1,
max_seq_length=128)
if os.path.exists(os.path.join(args.save_model_dir, "trainer_state.json")):
model = AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path=args.save_model_dir,
num_labels=num_labels).to(args.device)
else:
try:
model = AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path=os.path.join(cache_dir, args.language_model_name),
num_labels=num_labels).to(args.device)
except:
model = AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path=args.language_model_name, cache_dir=cache_dir,
num_labels=num_labels).to(args.device)
training_args = TrainingArguments(
output_dir=args.save_model_dir, # save model directory
learning_rate=args.learning_rate, # learning rate
num_train_epochs=args.num_epochs, # total # of training epochs
per_device_train_batch_size=args.batch_size, # batch size per device during training
per_device_eval_batch_size=args.batch_size, # batch size for evaluation
warmup_ratio=0.06, # warmup first 6% of training steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
evaluation_strategy="epoch", # evaluate at per epoch
load_best_model_at_end=True, # load the best model after training
save_strategy="epoch", # strategy for saving models
metric_for_best_model=glue_data_metrics_map[args.dataset_name], # specify the metric to compare two different models
greater_is_better=True # better models should have a greater metric
)
logger.info(f"model -> {model}")
trainer = CustomizedTrainer(
model=model, # model to be trained
args=training_args, # training arguments
train_dataset=train_dataset, # training dataset
eval_dataset=val_dataset, # evaluation dataset
compute_metrics=partial(compute_metrics, dataset_names=[args.dataset_name]), # function for computing metrics
tokenizer=tokenizer # tokenizer
)
if not os.path.exists(os.path.join(training_args.output_dir, "trainer_state.json")):
trainer.train()
# save the state and model for trainer
save_state_and_model_for_hf_trainer(trainer=trainer)
logger.info(f"get final performance on dataset {args.dataset_name}...")
test_metrics = trainer.evaluate(eval_dataset=test_dataset)
test_metrics = {k: float(f"{v:.4f}") if isinstance(v, float) else v for k, v in test_metrics.items()}
logger.info(f"test performance: {test_metrics}")
result_json = json.dumps(test_metrics, indent=4)
save_result_dir = f"./save_model_results/{args.dataset_name}/{save_model_name}"
os.makedirs(save_result_dir, exist_ok=True)
save_result_path = os.path.join(save_result_dir, f"{save_model_name}.json")
with open(save_result_path, "w") as file:
file.write(result_json)
run_time = time.time() - run_start_time
logger.info(f"run {run} cost {run_time:.2f} seconds.")
test_metrics_all_runs.append(test_metrics)
# avoid the overlap of logs
if run < args.num_runs - 1:
logger.removeHandler(fh)
logger.removeHandler(ch)
for run_idx, test_metrics in enumerate(test_metrics_all_runs):
logger.info(f"test performance on run {run_idx}: {test_metrics}")
sys.exit()