This is a brief instruction to perform our test
- instruction on train.py
python train.py
--use_validation
--dataset_path /path/to/megadepth
--scene_info_path /path/to/preprocessing/output
--model_type vgg16 or res50 or res101
--truncated_block 1 or 2 or 3 (resnet usually starts from 2 since it downscale too much)
--finetune_layers 1 or more (for vgg is the layers, for resnet is bottlenecks)
--finetune_skip_layers True or False
--dilation_blocks 1 or 2
After training, pls save the checkpoint and log.txt for evaluation (pls conform a name convention as below)
tar -czvf modelType_TruncatedBlock_FinetuneLayers_FinetuneSkipLayers.tar.gz checkpoints/ log.txt
- instruction on extract_feature.py
python extract_features.py
--image_list_file /path/to/test_image.txt
--model_type vgg16 or res50 or res101
--truncated_blocks have to use the same number of training
--dilation_blocks 1 or 2
The output file is installed in the image folder