forked from mihaidusmanu/d2-net
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathextract_features.py
196 lines (169 loc) · 5.29 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import argparse
import numpy as np
import imageio
import torch
from tqdm import tqdm
import scipy
import scipy.io
import scipy.misc
from lib.model_test import D2Net
from lib.utils import preprocess_image
from lib.pyramid import process_multiscale
# CUDA
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
# Argument parsing
parser = argparse.ArgumentParser(description='Feature extraction script')
parser.add_argument(
'--image_list_file', type=str, required=True,
help='path to a file containing a list of images to process'
)
parser.add_argument(
'--preprocessing', type=str, default='caffe',
help='image preprocessing (caffe or torch)'
)
parser.add_argument(
'--model_file', type=str, default=None,
help='path to the full model'
)
parser.add_argument(
'--max_edge', type=int, default=1600,
help='maximum image size at network input'
)
parser.add_argument(
'--max_sum_edges', type=int, default=2800,
help='maximum sum of image sizes at network input'
)
parser.add_argument(
'--output_extension', type=str, default='.pspnet-res50-cs',
help='extension for the output'
)
parser.add_argument(
'--output_type', type=str, default='npz',
help='output file type (npz or mat)'
)
parser.add_argument(
'--multiscale', dest='multiscale', action='store_true',
help='extract multiscale features'
)
parser.set_defaults(multiscale=False)
parser.add_argument(
'--no-relu', dest='use_relu', action='store_false',
help='remove ReLU after the dense feature extraction module'
)
parser.set_defaults(use_relu=True)
parser.add_argument(
'--model_type', type=str, default='res50',
help='type of pretrained model'
)
parser.add_argument(
'--truncated_blocks', type=int, default=2,
help='number of truncated blocks'
)
parser.add_argument(
'--edge_threshold', type=float, default=5,
help='edge threshold to select feature'
)
parser.add_argument(
'--dilation_blocks', type=int, default=1,
help='use dilation or not'
)
parser.add_argument(
'--pspnetTest', type=int, default=0,
help='use PSPNet Model or not'
)
args = parser.parse_args()
print(args)
# calculate scaling step
if args.model_type == 'vgg16':
scaling_steps = 5-args.truncated_blocks
elif args.model_type == 'res50':
scaling_steps = 6-args.dilation_blocks-args.truncated_blocks
elif args.model_type == 'res101':
scaling_steps = 6-args.dilation_blocks-args.truncated_blocks
# Creating CNN model
model = D2Net(
model_file=args.model_file,
use_relu=args.use_relu,
use_cuda=use_cuda,
truncated_blocks=args.truncated_blocks,
model_type=args.model_type,
edge_threshold=args.edge_threshold,
dilation_blocks=args.dilation_blocks,
pspnetTest=args.pspnetTest
)
print(model)
if use_cuda:
model = model.cuda()
# Process the file
with open(args.image_list_file, 'r') as f:
lines = f.readlines()
for line in tqdm(lines, total=len(lines)):
path = line.strip()
image = imageio.imread(path)
if len(image.shape) == 2:
image = image[:, :, np.newaxis]
image = np.repeat(image, 3, -1)
# TODO: switch to PIL.Image due to deprecation of scipy.misc.imresize.
resized_image = image
if max(resized_image.shape) > args.max_edge:
resized_image = scipy.misc.imresize(
resized_image,
args.max_edge / max(resized_image.shape)
).astype('float')
if sum(resized_image.shape[: 2]) > args.max_sum_edges:
resized_image = scipy.misc.imresize(
resized_image,
args.max_sum_edges / sum(resized_image.shape[: 2])
).astype('float')
fact_i = image.shape[0] / resized_image.shape[0]
fact_j = image.shape[1] / resized_image.shape[1]
input_image = preprocess_image(
resized_image,
preprocessing=args.preprocessing
)
with torch.no_grad():
if args.multiscale:
keypoints, scores, descriptors = process_multiscale(
torch.tensor(
input_image[np.newaxis, :, :, :].astype(np.float32),
device=device
),
model,
scaling_steps=scaling_steps
)
else:
keypoints, scores, descriptors = process_multiscale(
torch.tensor(
input_image[np.newaxis, :, :, :].astype(np.float32),
device=device
),
model,
scales=[1],
scaling_steps=scaling_steps
)
# Input image coordinates
keypoints[:, 0] *= fact_i
keypoints[:, 1] *= fact_j
# i, j -> u, v
keypoints = keypoints[:, [1, 0, 2]]
if args.output_type == 'npz':
with open(path + args.output_extension, 'wb') as output_file:
np.savez(
output_file,
keypoints=keypoints,
scores=scores,
descriptors=descriptors
)
elif args.output_type == 'mat':
with open(path + args.output_extension, 'wb') as output_file:
scipy.io.savemat(
output_file,
{
'keypoints': keypoints,
'scores': scores,
'descriptors': descriptors
}
)
else:
raise ValueError('Unknown output type.')