-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
143 lines (124 loc) · 4.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# ============================================================================
# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train"""
import os
import time
import argparse
import yaml
import numpy as np
from mindspore import nn, ops, context, save_checkpoint, set_seed, jit, data_sink
from src import create_caetransformer_dataset, CaeInformer
from eval import cae_transformer_prediction, cae_transformer_eval
np.random.seed(0)
set_seed(0)
def parse_args():
"""Parse input args"""
parser = argparse.ArgumentParser(description="CAE-Transformer for 2D cylinder flow")
parser.add_argument(
"--mode",
type=str,
default="PYNATIVE",
choices=["GRAPH", "PYNATIVE"],
help="Context mode, support 'GRAPH', 'PYNATIVE'",
)
parser.add_argument(
"--save_graphs",
type=bool,
default=False,
choices=[True, False],
help="Whether to save intermediate compilation graphs",
)
parser.add_argument("--save_graphs_path", type=str, default="./graphs")
parser.add_argument(
"--device_target",
type=str,
default="GPU",
choices=["GPU", "Ascend"],
help="The target device to run, support 'Ascend', 'GPU'",
)
parser.add_argument(
"--device_id", type=int, default=0, help="ID of the target device"
)
parser.add_argument("--config_file_path", type=str, default="./config.yaml")
input_args = parser.parse_args()
return input_args
def train():
"""train process"""
# prepare params
with open(args.config_file_path, 'r') as f:
config = yaml.safe_load(f)
data_params = config["data"]
model_params = config["cae_transformer"]
optimizer_params = config["optimizer"]
# prepare summary file
summary_dir = optimizer_params["summary_dir"]
ckpt_dir = os.path.join(summary_dir, "ckpt")
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
# prepare model
model = CaeInformer(**model_params)
loss_fn = nn.MSELoss()
optimizer = nn.AdamWeightDecay(
model.trainable_params(),
optimizer_params["lr"],
weight_decay=optimizer_params["weight_decay"],
)
def forward_fn(data, label):
logits = model(data)
loss = loss_fn(logits, label)
return loss
grad_fn = ops.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=False)
@jit
def train_step(data, label):
loss, grads = grad_fn(data, label)
loss = ops.depend(loss, optimizer(grads))
return loss
# prepare dataset
train_dataset, eval_dataset = create_caetransformer_dataset(
data_params['data_path'],
data_params["batch_size"],
data_params["seq_len"],
data_params["pred_len"],
)
# data sink
sink_process = data_sink(train_step, train_dataset, sink_size=1)
train_data_size = train_dataset.get_dataset_size()
print(f"====================Start cae transformer train=====================")
train_loss = []
model.set_train()
for epoch in range(1, optimizer_params["epochs"] + 1):
local_time_beg = time.time()
epoch_train_loss = 0
model.set_train(True)
for _ in range(train_data_size):
epoch_train_loss = ops.squeeze(sink_process(), axis=())
train_loss.append(epoch_train_loss)
print(f"epoch: {epoch} train loss: {epoch_train_loss} epoch time: {time.time() - local_time_beg:.2f}s")
if epoch % optimizer_params["save_ckpt_interval"] == 0:
save_checkpoint(model, f"{ckpt_dir}/model_{epoch}.ckpt")
if epoch % optimizer_params["eval_interval"] == 0:
model.set_train(False)
cae_transformer_eval(model, eval_dataset, data_params)
print(f"====================End cae transformer train=======================")
cae_transformer_prediction(args)
if __name__ == "__main__":
args = parse_args()
context.set_context(mode=context.GRAPH_MODE if args.mode.upper().startswith("GRAPH") else context.PYNATIVE_MODE,
save_graphs=args.save_graphs,
save_graphs_path=args.save_graphs_path,
device_target=args.device_target,
device_id=args.device_id)
train()