-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutilities.py
264 lines (240 loc) · 4.71 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import itertools
import numpy as np
from datetime import datetime
import time
eV2Hartree = 0.0367493 # from Google
Hartree2eV = 27.2114 # from Google
k = 0.0072973525**2 / 2
def rwf_length(file, trim=0):
"""
Finds the length of rwf file with offset included.
:param file: Name of text file where the rwfdump data is stored
:param trim: offset on reading the data
:return: int: length of file
"""
linenum = 0
array = []
with open(file, "r") as tmp:
lines = tmp.readlines()
for l in lines:
if l.startswith(" Dump of file"):
break
else:
linenum += 1
length = int(list(filter(None, lines[linenum].split(" ")))[-5]) - trim
return length
def import_data(file, trim=0):
"""
Find the data stored in a text file obtained after rwfdump.
The data is imported as a 1D array.
:param file: Name of text file where the rwfdump data is stored
:param trim: int: offset on reading the data
:return: 1D Numpy array of data
"""
linenum = 0
array = []
with open(file, "r") as tmp:
lines = tmp.readlines()
for l in lines:
if l.startswith(" Dump of file"):
break
else:
linenum += 1
aux = []
for l in lines[linenum+1:]:
newl = l.replace("\n", " ")
newl2 = newl.replace("D", "E")
aux.append(list(filter(None, newl2.split(" "))))
array_str = list(itertools.chain.from_iterable(aux))
array = [float(x) for x in array_str[trim:]]
return np.array(array)
def square(LTM, ifHermitian=True, makeComplex=False):
"""
Turns row major lower triangle matrix represented in a 1D array to square matrix
:param LTM: Lower triangular matrix stored in a row major 1D Numpy array
:param ifHermitian: True if the full matrix is Hermitian, False if anti-Hermitian
:param makeComplex: True if data is stored as real but is truly complex
:return: Numpy array of the full square matrix
"""
dim = int((np.sqrt(8*LTM.shape[0]+1)-1)/2)
aux = []
prev = 0
for i in range(dim):
aux.append(list(LTM[prev:prev+i+1]))
prev += i+1
for row in aux:
while len(row) < dim:
row.append("0")
M = np.array(aux,dtype="float64")
if makeComplex:
M = M.astype("complex128") * 1j
if ifHermitian:
M = M + M.T.conjugate() - np.diag(np.diag(M))
elif not ifHermitian:
M = M + M.T - np.diag(np.diag(M))
M = -M
elif not makeComplex:
M = M + M.T - np.diag(np.diag(M))
return M
def list_breaker(l, n):
"""
Partitions a list into a list of lists with size < n
:param l: list
:param n: max elements per sub-list
:return: partitioned list
"""
for i in range(0, len(l), n):
yield l[i:i + n]
def start_time(f_name):
"""
Writes the start time in diary.txt and returns a timestamp of when this was called.
:param f_name: The process this is measuring
:return:
"""
diary = open("diary.txt", "a")
abs_time = datetime.now()
diary.write(f"{f_name} Start Time: {abs_time}\n\n")
t_start = time.perf_counter()
diary.close()
return t_start
def end_time(f_name, t_start):
"""
Writes the amount of time that has passed since t_start
:param f_name:
:param t_start:
:return:
"""
diary = open("diary.txt", "a")
t_end = time.perf_counter()
t_elapsed = t_end - t_start
diary.write(f"Time elapsed for {f_name}: {t_elapsed}\n\n")
diary.close()
OAM = {
"S": 0,
"P": 1,
"D": 2,
"F": 3,
"G": 4,
"H": 5,
"I": 6
}
ptable = {
1:"H",
2:"He",
3:"Li",
4:"Be",
5:"B",
6:"C",
7:"N",
8:"O",
9:"F",
10:"Ne",
11:"Na",
12:"Mg",
13:"Al",
14:"Si",
15:"P",
16:"S",
17:"Cl",
18:"Ar",
19:"K",
20:"Ca",
21:"Sc",
22:"Ti",
23:"V",
24:"Cr",
25:"Mn",
26:"Fe",
27:"Co",
28:"Ni",
29:"Cu",
30:"Zn",
31:"Ga",
32:"Ge",
33:"As",
34:"Se",
35:"Br",
36:"Kr",
37:"Rb",
38:"Sr",
39:"Y",
40:"Zr",
41:"Nb",
42:"Mo",
43:"Tc",
44:"Ru",
45:"Rh",
46:"Pd",
47:"Ag",
48:"Cd",
49:"In",
50:"Sn",
51:"Sb",
52:"Te",
53:"I",
54:"Xe",
55:"Cs",
56:"Ba",
57:"La",
58:"Ce",
59:"Pr",
60:"Nd",
61:"Pm",
62:"Sm",
63:"Eu",
64:"Gd",
65:"Tb",
66:"Dy",
67:"Ho",
68:"Er",
69:"Tm",
70:"Yb",
71:"Lu",
72:"Hf",
73:"Ta",
74:"W",
75:"Re",
76:"Os",
77:"Ir",
78:"Pt",
79:"Au",
80:"Hg",
81:"Tl",
82:"Pb",
83:"Bi",
84:"Po",
85:"At",
86:"Rn",
87:"Fr",
88:"Ra",
89:"Ac",
90:"Th",
91:"Pa",
92:"U",
93:"Np",
94:"Pu",
95:"Am",
96:"Cm",
97:"Bk",
98:"Cf",
99:"Es",
100:"Fm",
101:"Md",
102:"No",
103:"Lr",
104:"Rf",
105:"Db",
106:"Sg",
107:"Bh",
108:"Hs",
109:"Mt",
110:"Ds",
111:"Rg",
112:"Cn",
113:"Nh",
114:"Fl",
115:"Mc",
116:"Lv",
117:"Ts",
118:"Og",
}