-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmeta_utils.py
469 lines (365 loc) · 14.9 KB
/
meta_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# from livelossplot import PlotLosses
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import numpy as np
from torch.utils.data import DataLoader
import random
from torchvision import datasets
import torchvision
import torchvision.transforms as transforms
import torch.utils.data as data
from os import listdir
from PIL import Image
from models.renderer import *
from util.util import EPSILON
from skimage.transform import resize
from collections import OrderedDict
def save_image(image, image_path):
ndarr = image.mul(255).clamp(0, 255).byte().cpu().numpy()
image_pil = Image.fromarray(ndarr)
image_pil.save(image_path)
def get_params(res, size):
w, h = size
new_h = h
new_w = w
x = random.randint(0, np.maximum(0, new_w - res))
y = random.randint(0, np.maximum(0, new_h - res))
# flip = random.random() > 0.5
return {'crop_pos': (x, y), 'flip': 0}
class DataLoaderHelper(data.Dataset):
def __init__(self, image_dir, opt):
super(DataLoaderHelper, self).__init__()
self.path = image_dir
# self.image_filenames = glob('{:s}/*.png'.format(image_dir),recursive=True)
# self.image_filenames = [x for x in listdir(image_dir) if 'output_iter200000' in x]
self.image_filenames = [x for x in listdir(image_dir)]
self.fea = opt.fea
self.res=opt.res
self.no_spec = opt.no_spec
# self.resize = False if opt.netloss=='Des19Net' else True
self.resize = False
def __crop(self, img, pos, size):
ow, oh = img.size
x1, y1 = pos
tw = th = size
if (ow > tw or oh > th):
return img.crop((x1, y1, x1 + tw, y1 + th))
return img
def __getitem__(self, index):
#load the image
fullimage = Image.open(os.path.join(self.path,self.image_filenames[index])).convert('RGB')
# fullimage = mpimg.imread(join(self.path,self.image_filenames[index]))
w, h = fullimage.size
w5 = int(w / 5)
I = fullimage.crop((0, 0, w5, h))
N = fullimage.crop((w5, 0, 2*w5, h))
D = fullimage.crop((2*w5, 0, 3*w5, h))
R = fullimage.crop((3*w5, 0, 4*w5, h))
S = fullimage.crop((4*w5, 0, 5*w5, h))
params = get_params(256, N.size)
crop = transforms.Compose([transforms.Lambda(lambda img: self.__crop(img, params['crop_pos'], 256)), transforms.ToTensor()])
resize = transforms.Compose( [transforms.Resize((256,256)),transforms.ToTensor()])
if self.resize:
N=resize(N)
D=resize(D)
R=resize(R)
S=resize(S)
else:
N=crop(N)
D=crop(D)
R=crop(R)
S=crop(S)
if self.no_spec:
S = S*0 + 0.04
if 'all' in self.fea or self.meta_debug != '':
return torch.cat((N,D,R,S), dim=0)
def __len__(self):
return len(self.image_filenames)
class DataLoaderHelper_test(data.Dataset):
def __init__(self, image_dir, opt):
super(DataLoaderHelper_test, self).__init__()
self.path = image_dir
# self.image_filenames = glob('{:s}/*.png'.format(image_dir),recursive=True)
# self.image_filenames = [x for x in listdir(image_dir) if 'output_iter200000' in x]
self.image_filenames = [x for x in listdir(image_dir)]
self.fea = opt.fea
# self.CROP_SIZE = 256 if opt.netloss=='Des19Net' else opt.res
self.CROP_SIZE = 256
self.no_spec = opt.no_spec
def __crop(self, img, pos, size):
ow, oh = img.size
x1, y1 = pos
tw = th = size
if (ow > tw or oh > th):
return img.crop((x1, y1, x1 + tw, y1 + th))
return img
def __getitem__(self, index):
#load the image
fullimage = Image.open(os.path.join(self.path,self.image_filenames[index])).convert('RGB')
name = self.image_filenames[index].split('.')[0]
w, h = fullimage.size
if fullimage.size[1]!=256:
fullimage = fullimage.resize((256,256))
if w==5*h:
# print('5555555555555555')
w5 = int(w / 5)
I = fullimage.crop((0, 0, w5, h))
N = fullimage.crop((w5, 0, 2*w5, h))
D = fullimage.crop((2*w5, 0, 3*w5, h))
R = fullimage.crop((3*w5, 0, 4*w5, h))
S = fullimage.crop((4*w5, 0, 5*w5, h))
resize = transforms.Compose( [transforms.Resize((self.CROP_SIZE,self.CROP_SIZE)),transforms.ToTensor()])
N=resize(N)
D=resize(D)
R=resize(R)
S=resize(S)
if self.no_spec:
S = S*0 + 0.04
if 'all' in self.fea or self.meta_debug != '':
return torch.cat((N,D,R,S), dim=0), name
elif w==4*h:
# print('44444444444444444444444444444')
w5 = int(w / 4)
D = fullimage.crop((0, 0, w5, h))
N = fullimage.crop((w5, 0, 2*w5, h))
R = fullimage.crop((2*w5, 0, 3*w5, h))
S = fullimage.crop((3*w5, 0, 4*w5, h))
resize = transforms.Compose( [transforms.Resize((self.CROP_SIZE,self.CROP_SIZE)),transforms.ToTensor()])
N=resize(N)
D=resize(D)**2.2+EPSILON
R=resize(R)+EPSILON
S=resize(S)**2.2+EPSILON
if self.no_spec:
S = S*0 + 0.04
if 'all' in self.fea or self.meta_debug != '':
return torch.cat((N,D,R,S), dim=0), name
elif w==h:
ToTensor = transforms.ToTensor()
return ToTensor(fullimage), name
def __len__(self):
return len(self.image_filenames)
def process_example(example, RES):
# image = torch.tensor(example) / 255.0
# image = example / 255.0
image = example
return image[:,image.shape[1]//2-RES//2:image.shape[1]//2+RES//2,image.shape[2]//2-RES//2:image.shape[2]//2+RES//2]
# ----------------------------------------------------------------------------
# helper saving function that can be used by subclasses
def save_all_models(model_dict, path,iteration):
save_filename = '%s_net.pth' % str(iteration)
save_path = os.path.join(path, save_filename)
torch.save(model_dict, save_path)
# helper saving function that can be used by subclasses
def save_network(net, path,iteration, name=''):
save_filename = '%s_%snet.pth' % (str(iteration),name)
save_path = os.path.join(path, save_filename)
torch.save(net.cpu().state_dict(), save_path)
if torch.cuda.is_available():
net.cuda()
# helper loading function that can be used by subclasses
def load_network_pretrain(network, feaext, iter_label, save_dir, cond_type, name=''):
save_filename = '%s_net.pth' % str(iter_label)
save_path = os.path.join(save_dir, save_filename)
if not os.path.isfile(save_path):
print('%s not exists yet!' % save_path)
else:
print('................loading {} network{}..........'.format(name, iter_label))
try:
network.load_state_dict(torch.load(save_path)[name])
except:
pretrained_dict = torch.load(save_path)[name]
model_dict = network.state_dict()
for i,j in model_dict.items():
print('model_dict ',i)
for i,j in pretrained_dict.items():
print('pretrained_dict ',i)
feaext_dict = feaext.state_dict()
try:
# print('try.........')
if cond_type=='conv':
# load feature extractor
pretrained_feaext_dict={}
for k,v in pretrained_dict.items():
if 'con_layer' in k:
idx = k.split('.')[1]
w_or_b = k.split('.')[-1]
new_name = 'net.'+str(int(idx)*2)+'.'+w_or_b
pretrained_feaext_dict[new_name] = v
feaext.load_state_dict(pretrained_feaext_dict)
elif cond_type=='unet':
pretrained_feaext_dict={}
for k,v in pretrained_dict.items():
if 'con_layer' in k:
conv = k.split('.')[1]
idx = k.split('.')[2]
w_or_b = k.split('.')[-1]
if conv=='convs':
new_name = conv+'.'+idx+'.'+w_or_b
elif conv=='deconvs':
new_name = conv+'.'+idx+'.conv1.'+w_or_b
pretrained_feaext_dict[new_name] = v
feaext.load_state_dict(pretrained_feaext_dict)
# load model
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
network.load_state_dict(pretrained_dict)
print('end try.........')
except:
print('Pretrained %s %s has fewer layers; The following are not initialized:' % (name, iter_label))
for k, v in pretrained_dict.items():
if v.size() == model_dict[k].size():
model_dict[k] = v
if sys.version_info >= (3,0):
not_initialized = set()
else:
from sets import Set
not_initialized = Set()
for k, v in model_dict.items():
if k not in pretrained_dict or v.size() != pretrained_dict[k].size():
not_initialized.add(k.split('.')[0])
print(sorted(not_initialized))
network.load_state_dict(model_dict)
# helper loading function that can be used by subclasses
def load_network2(network, iter_label, save_dir, name=''):
save_filename = '%s_net.pth' % str(iter_label)
save_path = os.path.join(save_dir, save_filename)
if not os.path.isfile(save_path):
print('%s not exists yet!' % save_path)
else:
print('................loading {} network{}..........'.format(name, iter_label))
# net = torch.load(save_path)
# network.load_state_dict(torch.load(save_path))
try:
network.load_state_dict(torch.load(save_path)[name])
except:
pretrained_dict = torch.load(save_path)[name]
model_dict = network.state_dict()
try:
pretrained_dict['con_layer.6.metaconv.weight'] = pretrained_dict['con_layer.3.metaconv.weight']
pretrained_dict['con_layer.6.metaconv.bias'] = pretrained_dict['con_layer.3.metaconv.bias']
pretrained_dict['con_layer.4.metaconv.weight'] = pretrained_dict['con_layer.2.metaconv.weight']
pretrained_dict['con_layer.4.metaconv.bias'] = pretrained_dict['con_layer.2.metaconv.bias']
pretrained_dict['con_layer.2.metaconv.weight'] = pretrained_dict['con_layer.1.metaconv.weight']
pretrained_dict['con_layer.2.metaconv.bias'] = pretrained_dict['con_layer.1.metaconv.bias']
pretrained_dict['con_layer.0.metaconv.weight'] = pretrained_dict['con_layer.0.metaconv.weight']
pretrained_dict['con_layer.0.metaconv.bias'] = pretrained_dict['con_layer.0.metaconv.bias']
del pretrained_dict['con_layer.1.metaconv.weight']
del pretrained_dict['con_layer.1.metaconv.bias']
del pretrained_dict['con_layer.3.metaconv.weight']
del pretrained_dict['con_layer.3.metaconv.bias']
for parameters,_ in pretrained_dict.items():
print('pretrained_dict ',parameters)
for parameters in model_dict:
print('model_dict ', parameters)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
network.load_state_dict(pretrained_dict)
except:
# model_dict['con_layer.0.metaconv.weight'] = pretrained_dict['con_layer.0.metaconv.weight']
# model_dict['con_layer.0.metaconv.bias'] = pretrained_dict['con_layer.0.metaconv.weight']
# model_dict['con_layer.2.metaconv.weight'] = pretrained_dict['con_layer.1.metaconv.weight']
# model_dict['con_layer.2.metaconv.bias'] = pretrained_dict['con_layer.1.metaconv.weight']
# model_dict['con_layer.4.metaconv.weight'] = pretrained_dict['con_layer.2.metaconv.weight']
# model_dict['con_layer.4.metaconv.bias'] = pretrained_dict['con_layer.2.metaconv.weight']
# model_dict['con_layer.6.metaconv.weight'] = pretrained_dict['con_layer.3.metaconv.weight']
# model_dict['con_layer.6.metaconv.bias'] = pretrained_dict['con_layer.3.metaconv.weight']
# network.load_state_dict(model_dict)
print('Pretrained %s %s has fewer layers; The following are not initialized:' % (name, iter_label))
for k, v in pretrained_dict.items():
if v.size() == model_dict[k].size():
model_dict[k] = v
if sys.version_info >= (3,0):
not_initialized = set()
else:
from sets import Set
not_initialized = Set()
for k, v in model_dict.items():
if k not in pretrained_dict or v.size() != pretrained_dict[k].size():
not_initialized.add(k.split('.')[0])
print(sorted(not_initialized))
network.load_state_dict(model_dict)
# helper loading function that can be used by subclasses
def load_network(network, iter_label, save_dir, name=''):
save_filename = '%s_net.pth' % str(iter_label)
# print(save_dir)
save_path = os.path.join(save_dir, save_filename)
if not os.path.isfile(save_path):
print('%s not exists yet!' % save_path)
else:
print('................loading {} network{}..........'.format(name, iter_label))
# net = torch.load(save_path)
# for parameters in net:
# print(parameters, 'shape: ', net[parameters].shape)
# network.load_state_dict(torch.load(save_path))
try:
network.load_state_dict(torch.load(save_path)[name])
except:
pretrained_dict = torch.load(save_path)
model_dict = network.state_dict()
try:
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
network.load_state_dict(pretrained_dict)
except:
print('Pretrained %s %s has fewer layers; The following are not initialized:' % (name, iter_label))
for k, v in pretrained_dict.items():
if v.size() == model_dict[k].size():
model_dict[k] = v
if sys.version_info >= (3,0):
not_initialized = set()
else:
from sets import Set
not_initialized = Set()
for k, v in model_dict.items():
if k not in pretrained_dict or v.size() != pretrained_dict[k].size():
not_initialized.add(k.split('.')[0])
print(sorted(not_initialized))
network.load_state_dict(model_dict)
# def laod_
def save_loss(loss, save_dir, step, save_name=''):
if isinstance(loss,dict):
for key, val in loss.items():
plt.figure()
plt.plot(step, val)
plt.savefig(save_dir+'/%sstep_%sloss.png'%(key,save_name))
plt.close()
else:
plt.figure()
plt.plot(step, loss)
plt.savefig(save_dir+'/%sloss.png'%save_name)
plt.close()
# input shape [B,H,W,C] or [H,W,C]
def paramize_out(opt, vec):
# assert len(vec.shape)==3, "error"
if opt.fea=='all_N1':
N = ProcessNormal(opt,vec[...,0:1])
D = vec[...,1:4]
R = vec[...,4:5].repeat(1,1,3) if vec.dim()==3 else vec[...,4:5].repeat(1,1,1,3)
if opt.no_spec:
if opt.gamma:
D = torch.max(D,torch.tensor([0.], device='cuda'))**2.2
S = D*0.0+0.04
else:
S = vec[...,5:8]
if opt.gamma:
D = torch.max(D,torch.tensor([0.], device='cuda'))**2.2
S = torch.max(S,torch.tensor([0.], device='cuda'))**2.2
return torch.cat((N,D,R,S), dim=-1)
elif opt.fea=='all_N2':
N = ProcessNormal(opt,vec[...,0:2])
D = vec[...,2:5]
R = vec[...,5:6].repeat(1,1,3) if vec.dim()==3 else vec[...,5:6].repeat(1,1,1,3)
S = vec[...,6:9]
if opt.gamma:
D = torch.max(D,torch.tensor([0.], device='cuda'))**2.2
S = torch.max(S,torch.tensor([0.], device='cuda'))**2.2
return torch.cat((N,D,R,S), dim=-1)
elif opt.fea=='all_N3':
N = ProcessNormal(opt,vec[...,0:3])
D = vec[...,3:6]
R = vec[...,6:7].repeat(1,1,3) if vec.dim()==3 else vec[...,6:7].repeat(1,1,1,3)
S = vec[...,7:10]
return torch.cat((N,D,R,S), dim=-1)