@@ -14,6 +14,7 @@ loadin <- TRUE
14
14
if (loadin == TRUE ){
15
15
load(' dataset.RData' )
16
16
load(' de_list.RData' )
17
+ load(' answer.RData' )
17
18
}else { # Generate a new dataset.
18
19
preset <- search_net(sub_info , node_size = size , ori_name = TRUE ) # Extract a connected subnetwork from the original network.
19
20
de_list <- as.character(unique(as.vector(preset )))
@@ -37,31 +38,33 @@ if (loadin == TRUE){
37
38
38
39
save(dataset , file = ' dataset.RData' )
39
40
save(de_list , file = ' de_list.RData' )
41
+ answer <- NULL
40
42
}
41
43
label <- c(rep(0 , half ), rep(1 , half ))
42
44
43
-
44
45
# Prioritize disease genes using MarkRank.
45
- load(' result.RData' )
46
46
adj_matrix <- as.matrix(sub_info $ matrix )
47
47
adj_matrix <- adj_matrix [colnames(dataset ), colnames(dataset )]
48
48
adj_matrix <- adj_matrix + t(adj_matrix )
49
- result_tmp <- markrank(dataset , label , adj_matrix , alpha = 0.8 , lambda = 0.2 , eps = 1e-10 ,d = Inf )
50
- if (sum(abs(result_tmp $ score - result $ score )) > 1e-10 ){
51
- print(' Computation error!!' )
52
- }else {
53
- print(' NO inner error!!' )
49
+
50
+ print(system.time(result1 <- markrank(dataset , label , adj_matrix , alpha = 0.8 , lambda = 0.2 , eps = 1e-10 , trace = F , d = Inf )))
51
+ if (! is.null(answer ) && sum(abs(result1 $ score - answer $ result1 $ score )) > 1e-10 ){
52
+ stop(' Computation error!!' )
54
53
}
55
- s <- sort(result_tmp $ score , decreasing = TRUE )
54
+ s1 <- sort(result1 $ score , decreasing = TRUE )
56
55
print(' The score of pre-set differential expression genes.' )
57
- print(result_tmp $ score [de_list ])
56
+ print(result1 $ score [de_list ])
58
57
print(" False discovery genes are" )
59
- print(setdiff(names(s [1 : 10 ]), de_list ))
60
-
58
+ print(setdiff(names(s1 [1 : 10 ]), de_list ))
61
59
62
60
# Set different d for simplifying G_2 computation.
63
61
d <- 2
64
- system.time(result1 <- markrank(dataset , label , adj_matrix , alpha = 0.8 , lambda = 0.2 , eps = 1e-10 , trace = F , d = Inf ))
65
- system.time(result2 <- markrank(dataset , label , adj_matrix , alpha = 0.8 , lambda = 0.2 , eps = 1e-10 , trace = F , d = d ))
66
- matrix (c(result1 $ score , result2 $ score ), 100 , 2 , dimnames = list (1 : 100 , c(Inf , d )))
67
-
62
+ print(system.time(result2 <- markrank(dataset , label , adj_matrix , alpha = 0.8 , lambda = 0.2 , eps = 1e-10 , trace = F , d = d )))
63
+ if (! is.null(answer ) && sum(abs(result2 $ score - answer $ result2 $ score )) > 1e-10 ){
64
+ stop(' Computation error!!' )
65
+ }
66
+ s2 <- sort(result2 $ score , decreasing = TRUE )
67
+ print(' The score of pre-set differential expression genes.' )
68
+ print(result2 $ score [de_list ])
69
+ print(" False discovery genes are" )
70
+ print(setdiff(names(s2 [1 : 10 ]), de_list ))
0 commit comments