-
Notifications
You must be signed in to change notification settings - Fork 0
/
AlgorithmW.lhs
522 lines (442 loc) · 17 KB
/
AlgorithmW.lhs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
\documentclass[a4paper,11pt]{article}
\usepackage[margin=2.5cm]{geometry}
\usepackage{hyperref}
%include polycode.fmt
%format alpha = "\alpha"
%format Set.empty = "\emptyset"
%format `Set.union` = "\cup"
%format `Set.difference` = "~\backslash~"
%format Set.singleton n = "\{" n "\}"
%format <+> = "\left<+\right>"
\title{\bf Algorithm W Step by Step}
\author{Martin Grabm{\"u}ller}
\date{Sep 26 2006 (Draft)}
\begin{document}
\maketitle
\begin{abstract}\noindent
In this paper we develop a complete implementation of the classic
algorithm W for Hindley-Milner polymorphic type inference in Haskell.
\end{abstract}
\section{Introduction}
Type inference is a tricky business, and it is even harder to learn
the basics, because most publications are about very advanced topics
like rank-N polymorphism, predicative/impredicative type systems,
universal and existential types and so on. Since I learn best by
actually developing the solution to a problem, I decided to write a
basic tutorial on type inference, implementing one of the most basic
type inference algorithms which has nevertheless practical uses as the
basis of the type checkers of languages like ML or Haskell.
The type inference algorithm studied here is the classic Algoritm W
proposed by Milner \cite{Milner1978Theory}. For a very readable
presentation of this algorithm and possible variations and extensions
read also \cite{Heeren2002GeneralizingHM}. Several aspects of this
tutorial are also inspired by \cite{Jones1999THiH}.
This tutorial is the typeset output of a literate Haskell script and
can be directly loaded into an Haskell interpreter in order to play
with it. This document in electronic form as well as the literate
Haskell script are available from my homepage\footnote{Just search the
web for my name.}
This module was tested with version 6.6 of the Glasgow Haskell
Compiler \cite{GHC2006GHCHomepage}
\section{Algorithm W}
The module we're implementing is called |AlgorithmW| (for obvious
reasons). The exported items are both the data types (and
constructors) of the term and type language as well as the function
|ti|, which performs the actual type inference on an expression. The
types for the exported functions are given as comments, for reference.
\begin{code}
module AlgorithmW ( Exp(..),
Type(..),
ti -- |ti :: TypeEnv -> Exp -> (Subst, Type)|
) where
\end{code}
We start with the necessary imports. For representing environments
(also called contexts in the literature) and substitutions, we import
module |Data.Map|. Sets of type variables etc. will be represented as
sets from module |Data.Set|.
\begin{code}
import qualified Data.Map as Map
import qualified Data.Set as Set
\end{code}
Since we will also make use of various monad transformers, several
modules from the monad template library are imported as well.
\begin{code}
import Control.Monad.Error
import Control.Monad.Reader
import Control.Monad.State
\end{code}
The module |Text.PrettyPrint| provides data types and functions for
nicely formatted and indented output.
\begin{code}
import qualified Text.PrettyPrint as PP
\end{code}
\subsection{Preliminaries}
We start by defining the abstract syntax for both \emph{expressions}
(of type |Exp|), \emph{types} (|Type|) and \emph{type schemes}
(|Scheme|).
\begin{code}
data Exp = EVar String
| ELit Lit
| EApp Exp Exp
| EAbs String Exp
| ELet String Exp Exp
deriving (Eq, Ord)
data Lit = LInt Integer
| LBool Bool
deriving (Eq, Ord)
data Type = TVar String
| TInt
| TBool
| TFun Type Type
deriving (Eq, Ord)
data Scheme = Scheme [String] Type
\end{code}
%
In order to provide readable output and error messages, we define
several pretty-printing functions for the abstract syntax. These are
shown in Appendix~\ref{sec:pretty-printing}.
We will need to determine the free type variables of a type. Function
|ftv| implements this operation, which we implement in the type class
|Types| because it will also be needed for type environments (to be
defined below). Another useful operation on types, type schemes and
the like is that of applying a substitution.
\begin{code}
class Types a where
ftv :: a -> Set.Set String
apply :: Subst -> a -> a
\end{code}
\begin{code}
instance Types Type where
ftv (TVar n) = Set.singleton n
ftv TInt = Set.empty
ftv TBool = Set.empty
ftv (TFun t1 t2) = ftv t1 `Set.union` ftv t2
apply s (TVar n) = case Map.lookup n s of
Nothing -> TVar n
Just t -> t
apply s (TFun t1 t2) = TFun (apply s t1) (apply s t2)
apply s t = t
\end{code}
\begin{code}
instance Types Scheme where
ftv (Scheme vars t) = (ftv t) `Set.difference` (Set.fromList vars)
apply s (Scheme vars t) = Scheme vars (apply (foldr Map.delete s vars) t)
\end{code}
It will occasionally be useful to extend the |Types| methods to lists.
\begin{code}
instance Types a => Types [a] where
apply s = map (apply s)
ftv l = foldr Set.union Set.empty (map ftv l)
\end{code}
%
Now we define substitutions, which are finite mappings from type
variables to types.
%
\begin{code}
type Subst = Map.Map String Type
nullSubst :: Subst
nullSubst = Map.empty
composeSubst :: Subst -> Subst -> Subst
composeSubst s1 s2 = (Map.map (apply s1) s2) `Map.union` s1
\end{code}
%
Type environments, called $\Gamma$ in the text, are mappings from term
variables to their respective type schemes.
%
\begin{code}
newtype TypeEnv = TypeEnv (Map.Map String Scheme)
\end{code}
%
We define several functions on type environments. The operation
$\Gamma\backslash x$ removes the binding for $x$ from $\Gamma$ and is
called |remove|.
%
\begin{code}
remove :: TypeEnv -> String -> TypeEnv
remove (TypeEnv env) var = TypeEnv (Map.delete var env)
instance Types TypeEnv where
ftv (TypeEnv env) = ftv (Map.elems env)
apply s (TypeEnv env) = TypeEnv (Map.map (apply s) env)
\end{code}
%
The function |generalize| abstracts a type over all type variables
which are free in the type but not free in the given type environment.
%
\begin{code}
generalize :: TypeEnv -> Type -> Scheme
generalize env t = Scheme vars t
where vars = Set.toList ((ftv t) `Set.difference` (ftv env))
\end{code}
Several operations, for example type scheme instantiation, require
fresh names for newly introduced type variables. This is implemented
by using an appropriate monad which takes care of generating fresh
names. It is also capable of passing a dynamically scoped
environment, error handling and performing I/O, but we will not go
into details here.
\begin{code}
data TIEnv = TIEnv {}
data TIState = TIState { tiSupply :: Int,
tiSubst :: Subst}
type TI a = ErrorT String (ReaderT TIEnv (StateT TIState IO)) a
runTI :: TI a -> IO (Either String a, TIState)
runTI t =
do (res, st) <- runStateT (runReaderT (runErrorT t) initTIEnv) initTIState
return (res, st)
where initTIEnv = TIEnv{}
initTIState = TIState{tiSupply = 0,
tiSubst = Map.empty}
newTyVar :: String -> TI Type
newTyVar prefix =
do s <- get
put s{tiSupply = tiSupply s + 1}
return (TVar (prefix ++ show (tiSupply s)))
\end{code}
%
The instantiation function replaces all bound type variables in a type
scheme with fresh type variables.
%
\begin{code}
instantiate :: Scheme -> TI Type
instantiate (Scheme vars t) = do nvars <- mapM (\ _ -> newTyVar "a") vars
let s = Map.fromList (zip vars nvars)
return $ apply s t
\end{code}
%
This is the unification function for types. The function |varBind|
attempts to bind a type variable to a type and return that binding as
a subsitution, but avoids binding a variable to itself and performs
the occurs check.
%
\begin{code}
mgu :: Type -> Type -> TI Subst
mgu (TFun l r) (TFun l' r') = do s1 <- mgu l l'
s2 <- mgu (apply s1 r) (apply s1 r')
return (s1 `composeSubst` s2)
mgu (TVar u) t = varBind u t
mgu t (TVar u) = varBind u t
mgu TInt TInt = return nullSubst
mgu TBool TBool = return nullSubst
mgu t1 t2 = throwError $ "types do not unify: " ++ show t1 ++
" vs. " ++ show t2
varBind :: String -> Type -> TI Subst
varBind u t | t == TVar u = return nullSubst
| u `Set.member` ftv t = throwError $ "occur check fails: " ++ u ++
" vs. " ++ show t
| otherwise = return (Map.singleton u t)
\end{code}
\subsection{Main type inference function}
Types for literals are inferred by the function |tiLit|.
%
\begin{code}
tiLit :: TypeEnv -> Lit -> TI (Subst, Type)
tiLit _ (LInt _) = return (nullSubst, TInt)
tiLit _ (LBool _) = return (nullSubst, TBool)
\end{code}
%
The function |ti| infers the types for expressions. The type
environment must contain bindings for all free variables of the
expressions. The returned substitution records the type constraints
imposed on type variables by the expression, and the returned type is
the type of the expression.
%
\begin{code}
ti :: TypeEnv -> Exp -> TI (Subst, Type)
ti (TypeEnv env) (EVar n) =
case Map.lookup n env of
Nothing -> throwError $ "unbound variable: " ++ n
Just sigma -> do t <- instantiate sigma
return (nullSubst, t)
ti env (ELit l) = tiLit env l
ti env (EAbs n e) =
do tv <- newTyVar "a"
let TypeEnv env' = remove env n
env'' = TypeEnv (env' `Map.union` (Map.singleton n (Scheme [] tv)))
(s1, t1) <- ti env'' e
return (s1, TFun (apply s1 tv) t1)
ti env (EApp e1 e2) =
do tv <- newTyVar "a"
(s1, t1) <- ti env e1
(s2, t2) <- ti (apply s1 env) e2
s3 <- mgu (apply s2 t1) (TFun t2 tv)
return (s3 `composeSubst` s2 `composeSubst` s1, apply s3 tv)
ti env (ELet x e1 e2) =
do (s1, t1) <- ti env e1
let TypeEnv env' = remove env x
t' = generalize (apply s1 env) t1
env'' = TypeEnv (Map.insert x t' env')
(s2, t2) <- ti (apply s1 env'') e2
return (s1 `composeSubst` s2, t2)
\end{code}
%
This is the main entry point to the type inferencer. It simply calls
|ti| and applies the returned substitution to the returned type.
%
\begin{code}
typeInference :: Map.Map String Scheme -> Exp -> TI Type
typeInference env e =
do (s, t) <- ti (TypeEnv env) e
return (apply s t)
\end{code}
\subsection{Tests}
\label{sec:example-expressions}
The following simple expressions (partly taken from
\cite{Heeren2002GeneralizingHM}) are provided for testing the type
inference function.
%
\begin{code}
e0 = ELet "id" (EAbs "x" (EVar "x"))
(EVar "id")
e1 = ELet "id" (EAbs "x" (EVar "x"))
(EApp (EVar "id") (EVar "id"))
e2 = ELet "id" (EAbs "x" (ELet "y" (EVar "x") (EVar "y")))
(EApp (EVar "id") (EVar "id"))
e3 = ELet "id" (EAbs "x" (ELet "y" (EVar "x") (EVar "y")))
(EApp (EApp (EVar "id") (EVar "id")) (ELit (LInt 2)))
e4 = ELet "id" (EAbs "x" (EApp (EVar "x") (EVar "x")))
(EVar "id")
e5 = EAbs "m" (ELet "y" (EVar "m")
(ELet "x" (EApp (EVar "y") (ELit (LBool True)))
(EVar "x")))
\end{code}
%
This simple test function tries to infer the type for the given
expression. If successful, it prints the expression together with its
type, otherwise, it prints the error message.
%
\begin{code}
test :: Exp -> IO ()
test e =
do (res, _) <- runTI (typeInference Map.empty e)
case res of
Left err -> putStrLn $ "error: " ++ err
Right t -> putStrLn $ show e ++ " :: " ++ show t
\end{code}
\subsection{Main Program}
The main program simply infers the types for all the example
expression given in Section~\ref{sec:example-expressions} and prints
them together with their inferred types, or prints an error message if
type inference fails.
\begin{code}
main :: IO ()
main = mapM_ test [e0, e1, e2, e3, e4, e5]
\end{code}
%
This completes the implementation of the type inference algorithm.
\section{Conclusion}
This literate Haskell script is a self-contained implementation of
Algorithm~W \cite{Milner1978Theory}. Feel free to use this code and
to extend it to support better error messages, type classes, type
annotations etc. Eventually you may end up with a Haskell type
checker\dots
\bibliographystyle{plain}
\bibliography{bibliography}
\appendix
\section{Pretty-printing}
\label{sec:pretty-printing}
This appendix defines pretty-printing functions and instances for
|Show| for all interesting type definitions.
%
\begin{code}
instance Show Type where
showsPrec _ x = shows (prType x)
prType :: Type -> PP.Doc
prType (TVar n) = PP.text n
prType TInt = PP.text "Int"
prType TBool = PP.text "Bool"
prType (TFun t s) = prParenType t PP.<+> PP.text "->" PP.<+> prType s
prParenType :: Type -> PP.Doc
prParenType t = case t of
TFun _ _ -> PP.parens (prType t)
_ -> prType t
instance Show Exp where
showsPrec _ x = shows (prExp x)
prExp :: Exp -> PP.Doc
prExp (EVar name) = PP.text name
prExp (ELit lit) = prLit lit
prExp (ELet x b body) = PP.text "let" PP.<+>
PP.text x PP.<+> PP.text "=" PP.<+>
prExp b PP.<+> PP.text "in" PP.$$
PP.nest 2 (prExp body)
prExp (EApp e1 e2) = prExp e1 PP.<+> prParenExp e2
prExp (EAbs n e) = PP.char '\\' PP.<+> PP.text n PP.<+>
PP.text "->" PP.<+>
prExp e
prParenExp :: Exp -> PP.Doc
prParenExp t = case t of
ELet _ _ _ -> PP.parens (prExp t)
EApp _ _ -> PP.parens (prExp t)
EAbs _ _ -> PP.parens (prExp t)
_ -> prExp t
instance Show Lit where
showsPrec _ x = shows (prLit x)
prLit :: Lit -> PP.Doc
prLit (LInt i) = PP.integer i
prLit (LBool b) = if b then PP.text "True" else PP.text "False"
instance Show Scheme where
showsPrec _ x = shows (prScheme x)
prScheme :: Scheme -> PP.Doc
prScheme (Scheme vars t) = PP.text "All" PP.<+>
PP.hcat
(PP.punctuate PP.comma (map PP.text vars))
PP.<> PP.text "." PP.<+> prType t
\end{code}
\end{document}
test' :: Exp -> IO ()
test' e =
do (res, _) <- runTI (bu Set.empty e)
case res of
Left err -> putStrLn $ "error: " ++ err
Right t -> putStrLn $ show e ++ " :: " ++ show t
\subsection{Collecting Constraints}
\begin{code}
data Constraint = CEquivalent Type Type
| CExplicitInstance Type Scheme
| CImplicitInstance Type (Set.Set String) Type
instance Show Constraint where
showsPrec _ x = shows (prConstraint x)
prConstraint :: Constraint -> PP.Doc
prConstraint (CEquivalent t1 t2) = PP.hsep [prType t1, PP.text "=", prType t2]
prConstraint (CExplicitInstance t s) =
PP.hsep [prType t, PP.text "<~", prScheme s]
prConstraint (CImplicitInstance t1 m t2) =
PP.hsep [prType t1,
PP.text "<=" PP.<>
PP.parens (PP.hcat (PP.punctuate PP.comma (map PP.text (Set.toList m)))),
prType t2]
type Assum = [(String, Type)]
type CSet = [Constraint]
bu :: Set.Set String -> Exp -> TI (Assum, CSet, Type)
bu m (EVar n) = do b <- newTyVar "b"
return ([(n, b)], [], b)
bu m (ELit (LInt _)) = do b <- newTyVar "b"
return ([], [CEquivalent b TInt], b)
bu m (ELit (LBool _)) = do b <- newTyVar "b"
return ([], [CEquivalent b TBool], b)
bu m (EApp e1 e2) =
do (a1, c1, t1) <- bu m e1
(a2, c2, t2) <- bu m e2
b <- newTyVar "b"
return (a1 ++ a2, c1 ++ c2 ++ [CEquivalent t1 (TFun t2 b)],
b)
bu m (EAbs x body) =
do b@(TVar vn) <- newTyVar "b"
(a, c, t) <- bu (vn `Set.insert` m) body
return (a `removeAssum` x, c ++ [CEquivalent t' b | (x', t') <- a,
x == x'], TFun b t)
bu m (ELet x e1 e2) =
do (a1, c1, t1) <- bu m e1
(a2, c2, t2) <- bu (x `Set.delete` m) e2
return (a1 ++ removeAssum a2 x,
c1 ++ c2 ++ [CImplicitInstance t' m t1 |
(x', t') <- a2, x' == x], t2)
removeAssum [] _ = []
removeAssum ((n', _) : as) n | n == n' = removeAssum as n
removeAssum (a:as) n = a : removeAssum as n
\end{code}
\bibliographystyle{plain}
\bibliography{bibliography}
\end{document}
% Local Variables:
% mode: latex
% mmm-classes: literate-haskell-latex
% End: