Skip to content

Latest commit

 

History

History
329 lines (271 loc) · 9.37 KB

File metadata and controls

329 lines (271 loc) · 9.37 KB

English Version

题目描述

有一幅以 m x n 的二维整数数组表示的图画 image ,其中 image[i][j] 表示该图画的像素值大小。

你也被给予三个整数 srscnewColor 。你应该从像素 image[sr][sc] 开始对图像进行 上色填充

为了完成 上色工作 ,从初始像素开始,记录初始坐标的 上下左右四个方向上 像素值与初始坐标相同的相连像素点,接着再记录这四个方向上符合条件的像素点与他们对应 四个方向上 像素值与初始坐标相同的相连像素点,……,重复该过程。将所有有记录的像素点的颜色值改为 newColor 。

最后返回 经过上色渲染后的图像 

 

示例 1:

输入: image = [[1,1,1],[1,1,0],[1,0,1]],sr = 1, sc = 1, newColor = 2
输出: [[2,2,2],[2,2,0],[2,0,1]]
解析: 在图像的正中间,(坐标(sr,sc)=(1,1)),在路径上所有符合条件的像素点的颜色都被更改成2。
注意,右下角的像素没有更改为2,因为它不是在上下左右四个方向上与初始点相连的像素点。

示例 2:

输入: image = [[0,0,0],[0,0,0]], sr = 0, sc = 0, newColor = 2
输出: [[2,2,2],[2,2,2]]

 

提示:

  • m == image.length
  • n == image[i].length
  • 1 <= m, n <= 50
  • 0 <= image[i][j], newColor < 216
  • 0 <= sr < m
  • 0 <= sc < n

解法

Flood fill 算法。

Flood fill 算法是从一个区域中提取若干个连通的点与其他相邻区域区分开(或分别染成不同颜色)的经典算法。因为其思路类似洪水从一个区域扩散到所有能到达的区域而得名。

最简单的实现方法是采用 DFS 的递归方法,也可以采用 BFS 的迭代来实现。

Python3

DFS:

class Solution:
    def floodFill(self, image: List[List[int]], sr: int, sc: int, newColor: int) -> List[List[int]]:
        def dfs(i, j, oc, nc):
            if i < 0 or i >= len(image) or j < 0 or j >= len(image[0]) or image[i][j] != oc or image[i][j] == nc:
                return
            image[i][j] = nc
            for x, y in [[0, 1], [0, -1], [1, 0], [-1, 0]]:
                dfs(i + x, j + y, oc, nc)

        dfs(sr, sc, image[sr][sc], newColor)
        return image

BFS:

class Solution:
    def floodFill(self, image: List[List[int]], sr: int, sc: int, newColor: int) -> List[List[int]]:
        if image[sr][sc] == newColor:
            return image
        q = deque([(sr, sc)])
        oc = image[sr][sc]
        image[sr][sc] = newColor
        while q:
            i, j = q.popleft()
            for a, b in [[0, -1], [0, 1], [1, 0], [-1, 0]]:
                x, y = i + a, j + b
                if 0 <= x < len(image) and 0 <= y < len(image[0]) and image[x][y] == oc:
                    q.append((x, y))
                    image[x][y] = newColor
        return image

Java

DFS:

class Solution {
    private int[][] dirs = new int[][]{{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

    public int[][] floodFill(int[][] image, int sr, int sc, int newColor) {
        dfs(image, sr, sc, image[sr][sc], newColor);
        return image;
    }

    private void dfs(int[][] image, int i, int j, int oc, int nc) {
        if (i < 0 || i >= image.length || j < 0 || j >= image[0].length || image[i][j] != oc || image[i][j] == nc) {
            return;
        }
        image[i][j] = nc;
        for (int[] dir : dirs) {
            dfs(image, i + dir[0], j + dir[1], oc, nc);
        }
    }
}

BFS:

class Solution {
    public int[][] floodFill(int[][] image, int sr, int sc, int newColor) {
        if (image[sr][sc] == newColor) {
            return image;
        }
        Deque<int[]> q = new ArrayDeque<>();
        q.offer(new int[]{sr, sc});
        int oc = image[sr][sc];
        image[sr][sc] = newColor;
        int[] dirs = {-1, 0, 1, 0, -1};
        while (!q.isEmpty()) {
            int[] p = q.poll();
            int i = p[0], j = p[1];
            for (int k = 0; k < 4; ++k) {
                int x = i + dirs[k], y = j + dirs[k + 1];
                if (x >= 0 && x < image.length && y >= 0 && y < image[0].length && image[x][y] == oc) {
                    q.offer(new int[]{x, y});
                    image[x][y] = newColor;
                }
            }
        }
        return image;
    }
}

C++

DFS:

class Solution {
public:
    vector<vector<int>> dirs = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

    vector<vector<int>> floodFill(vector<vector<int>>& image, int sr, int sc, int newColor) {
        dfs(image, sr, sc, image[sr][sc], newColor);
        return image;
    }

    void dfs(vector<vector<int>>& image, int i, int j, int oc, int nc) {
        if (i < 0 || i >= image.size() || j < 0 || j >= image[0].size() || image[i][j] != oc || image[i][j] == nc) return;
        image[i][j] = nc;
        for (auto& dir : dirs) dfs(image, i + dir[0], j + dir[1], oc, nc);
    }
};

BFS:

class Solution {
public:
    vector<vector<int>> floodFill(vector<vector<int>>& image, int sr, int sc, int newColor) {
        if (image[sr][sc] == newColor) return image;
        int oc = image[sr][sc];
        image[sr][sc] = newColor;
        queue<pair<int, int>> q;
        q.push({sr, sc});
        vector<int> dirs = {-1, 0, 1, 0, -1};
        while (!q.empty())
        {
            auto p = q.front();
            q.pop();
            for (int k = 0; k < 4; ++k)
            {
                int x = p.first + dirs[k];
                int y = p.second + dirs[k + 1];
                if (x >= 0 && x < image.size() && y >= 0 && y < image[0].size() && image[x][y] == oc)
                {
                    q.push({x, y});
                    image[x][y] = newColor;
                }
            }
        }
        return image;
    }
};

Go

DFS:

func floodFill(image [][]int, sr int, sc int, newColor int) [][]int {
	dfs(image, sr, sc, image[sr][sc], newColor)
	return image
}

func dfs(image [][]int, i, j, oc, nc int) {
	if i < 0 || i >= len(image) || j < 0 || j >= len(image[0]) || image[i][j] != oc || image[i][j] == nc {
		return
	}
	image[i][j] = nc
	dirs := [4][2]int{{0, -1}, {0, 1}, {1, 0}, {-1, 0}}
	for _, dir := range dirs {
		dfs(image, i+dir[0], j+dir[1], oc, nc)
	}
}

BFS:

func floodFill(image [][]int, sr int, sc int, newColor int) [][]int {
	if image[sr][sc] == newColor {
		return image
	}
	oc := image[sr][sc]
	q := [][]int{[]int{sr, sc}}
	image[sr][sc] = newColor
	dirs := []int{-1, 0, 1, 0, -1}
	for len(q) > 0 {
		p := q[0]
		q = q[1:]
		for k := 0; k < 4; k++ {
			x, y := p[0]+dirs[k], p[1]+dirs[k+1]
			if x >= 0 && x < len(image) && y >= 0 && y < len(image[0]) && image[x][y] == oc {
				q = append(q, []int{x, y})
				image[x][y] = newColor
			}
		}
	}
	return image
}

TypeScript

function floodFill(
    image: number[][],
    sr: number,
    sc: number,
    newColor: number,
): number[][] {
    const m = image.length;
    const n = image[0].length;
    const target = image[sr][sc];
    const dfs = (i: number, j: number) => {
        if (
            i < 0 ||
            i === m ||
            j < 0 ||
            j === n ||
            image[i][j] !== target ||
            image[i][j] === newColor
        ) {
            return;
        }
        image[i][j] = newColor;
        dfs(i + 1, j);
        dfs(i - 1, j);
        dfs(i, j + 1);
        dfs(i, j - 1);
    };
    dfs(sr, sc);
    return image;
}

Rust

impl Solution {
    fn dfs(image: &mut Vec<Vec<i32>>, sr: i32, sc: i32, new_color: i32, target: i32) {
        if sr < 0 || sr == image.len() as i32 || sc < 0 || sc == image[0].len() as i32 {
            return;
        }
        let sr = sr as usize;
        let sc = sc as usize;
        if sr < 0 || image[sr][sc] == new_color || image[sr][sc] != target {
            return;
        }
        image[sr][sc] = new_color;
        let sr = sr as i32;
        let sc = sc as i32;
        Self::dfs(image, sr + 1, sc, new_color, target);
        Self::dfs(image, sr - 1, sc, new_color, target);
        Self::dfs(image, sr, sc + 1, new_color, target);
        Self::dfs(image, sr, sc - 1, new_color, target);
    }
    pub fn flood_fill(image: Vec<Vec<i32>>, sr: i32, sc: i32, new_color: i32) -> Vec<Vec<i32>> {
        let target = image[sr as usize][sc as usize];
        Self::dfs(&mut image, sr, sc, new_color, target);
        image
    }
}

...