Given an integer array nums
, return the length of the longest strictly increasing subsequence.
A subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7]
is a subsequence of the array [0,3,1,6,2,2,7]
.
Example 1:
Input: nums = [10,9,2,5,3,7,101,18] Output: 4 Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Example 2:
Input: nums = [0,1,0,3,2,3] Output: 4
Example 3:
Input: nums = [7,7,7,7,7,7,7] Output: 1
Constraints:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
Follow up: Can you come up with an algorithm that runs in O(n log(n))
time complexity?
Dynamic programming or Binary Indexed Tree.
Dynamic programming:
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
n = len(nums)
dp = [1] * n
for i in range(1, n):
for j in range(i):
if nums[j] < nums[i]:
dp[i] = max(dp[i], dp[j] + 1)
return max(dp)
Greedy & Binary search:
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
d = [nums[0]]
for x in nums[1:]:
if x > d[-1]:
d.append(x)
else:
idx = bisect_left(d, x)
if idx == len(d):
idx = 0
d[idx] = x
return len(d)
Binary Indexed Tree:
class BinaryIndexedTree:
def __init__(self, n):
self.n = n
self.c = [0] * (n + 1)
@staticmethod
def lowbit(x):
return x & -x
def update(self, x, val):
while x <= self.n:
self.c[x] = max(self.c[x], val)
x += BinaryIndexedTree.lowbit(x)
def query(self, x):
s = 0
while x:
s = max(s, self.c[x])
x -= BinaryIndexedTree.lowbit(x)
return s
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
s = sorted(set(nums))
m = {v: i for i, v in enumerate(s, 1)}
tree = BinaryIndexedTree(len(m))
ans = 1
for v in nums:
x = m[v]
t = tree.query(x - 1) + 1
ans = max(ans, t)
tree.update(x, t)
return ans
Dynamic programming:
class Solution {
public int lengthOfLIS(int[] nums) {
int n = nums.length;
int[] dp = new int[n];
Arrays.fill(dp, 1);
int res = 1;
for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[j] < nums[i]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
res = Math.max(res, dp[i]);
}
return res;
}
}
Greedy & Binary search:
class Solution {
public int lengthOfLIS(int[] nums) {
int n = nums.length;
int[] d = new int[n + 1];
d[1] = nums[0];
int size = 1;
for (int i = 1; i < n; ++i) {
if (nums[i] > d[size]) {
d[++size] = nums[i];
} else {
int left = 1, right = size;
while (left < right) {
int mid = (left + right) >> 1;
if (d[mid] >= nums[i]) {
right = mid;
} else {
left = mid + 1;
}
}
int p = d[left] >= nums[i] ? left : 1;
d[p] = nums[i];
}
}
return size;
}
}
Binary Indexed Tree:
class Solution {
public int lengthOfLIS(int[] nums) {
TreeSet<Integer> ts = new TreeSet();
for (int v : nums) {
ts.add(v);
}
int idx = 1;
Map<Integer, Integer> m = new HashMap<>();
for (int v : ts) {
m.put(v, idx++);
}
BinaryIndexedTree tree = new BinaryIndexedTree(m.size());
int ans = 1;
for (int v : nums) {
int x = m.get(v);
int t = tree.query(x - 1) + 1;
ans = Math.max(ans, t);
tree.update(x, t);
}
return ans;
}
}
class BinaryIndexedTree {
private int n;
private int[] c;
public BinaryIndexedTree(int n) {
this.n = n;
c = new int[n + 1];
}
public void update(int x, int val) {
while (x <= n) {
c[x] = Math.max(c[x], val);
x += lowbit(x);
}
}
public int query(int x) {
int s = 0;
while (x > 0) {
s = Math.max(s, c[x]);
x -= lowbit(x);
}
return s;
}
public static int lowbit(int x) {
return x & -x;
}
}
Dynamic programming:
function lengthOfLIS(nums: number[]): number {
let n = nums.length;
let dp = new Array(n).fill(1);
for (let i = 0; i < n; i++) {
for (let j = 0; j < i; j++) {
if (nums[j] < nums[i]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
return Math.max(...dp);
}
Greedy & Binary search:
function lengthOfLIS(nums: number[]): number {
const n = nums.length;
let d = new Array(n + 1);
d[1] = nums[0];
let size = 1;
for (let i = 1; i < n; ++i) {
if (nums[i] > d[size]) {
d[++size] = nums[i];
} else {
let left = 1,
right = size;
while (left < right) {
const mid = (left + right) >> 1;
if (d[mid] >= nums[i]) {
right = mid;
} else {
left = mid + 1;
}
}
const p = d[left] >= nums[i] ? left : 1;
d[p] = nums[i];
}
}
return size;
}
Dynamic programming:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
vector<int> dp(n, 1);
for (int i = 1; i < n; ++i)
{
for (int j = 0; j < i; ++j)
{
if (nums[j] < nums[i]) dp[i] = max(dp[i], dp[j] + 1);
}
}
return *max_element(dp.begin(), dp.end());
}
};
Greedy & Binary search:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
vector<int> d{nums[0]};
for (int i = 1; i < n; ++i)
{
if (nums[i] > d[d.size() - 1]) d.push_back(nums[i]);
else
{
int idx = lower_bound(d.begin(), d.end(), nums[i]) - d.begin();
if (idx == d.size()) idx = 0;
d[idx] = nums[i];
}
}
return d.size();
}
};
Binary Indexed Tree:
class BinaryIndexedTree {
public:
int n;
vector<int> c;
BinaryIndexedTree(int _n): n(_n), c(_n + 1){}
void update(int x, int val) {
while (x <= n)
{
c[x] = max(c[x], val);
x += lowbit(x);
}
}
int query(int x) {
int s = 0;
while (x > 0)
{
s = max(s, c[x]);
x -= lowbit(x);
}
return s;
}
int lowbit(int x) {
return x & -x;
}
};
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
set<int> s(nums.begin(), nums.end());
int idx = 1;
unordered_map<int, int> m;
for (int v : s) m[v] = idx++;
BinaryIndexedTree* tree = new BinaryIndexedTree(m.size());
int ans = 1;
for (int v : nums)
{
int x = m[v];
int t = tree->query(x - 1) + 1;
ans = max(ans, t);
tree->update(x, t);
}
return ans;
}
};
Dynamic programming:
func lengthOfLIS(nums []int) int {
n := len(nums)
dp := make([]int, n)
dp[0] = 1
res := 1
for i := 1; i < n; i++ {
dp[i] = 1
for j := 0; j < i; j++ {
if nums[j] < nums[i] {
dp[i] = max(dp[i], dp[j]+1)
}
}
res = max(res, dp[i])
}
return res
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
Greedy & Binary search:
func lengthOfLIS(nums []int) int {
d := make([]int, len(nums)+1)
d[1] = nums[0]
size := 1
for _, x := range nums[1:] {
if x > d[size] {
size++
d[size] = x
} else {
left, right := 1, size
for left < right {
mid := (left + right) >> 1
if d[mid] >= x {
right = mid
} else {
left = mid + 1
}
}
if d[left] < x {
left = 1
}
d[left] = x
}
}
return size
}
Binary Indexed Tree:
type BinaryIndexedTree struct {
n int
c []int
}
func newBinaryIndexedTree(n int) *BinaryIndexedTree {
c := make([]int, n+1)
return &BinaryIndexedTree{n, c}
}
func (this *BinaryIndexedTree) lowbit(x int) int {
return x & -x
}
func (this *BinaryIndexedTree) update(x, val int) {
for x <= this.n {
if this.c[x] < val {
this.c[x] = val
}
x += this.lowbit(x)
}
}
func (this *BinaryIndexedTree) query(x int) int {
s := 0
for x > 0 {
if s < this.c[x] {
s = this.c[x]
}
x -= this.lowbit(x)
}
return s
}
func lengthOfLIS(nums []int) int {
s := make(map[int]bool)
for _, v := range nums {
s[v] = true
}
var t []int
for v, _ := range s {
t = append(t, v)
}
sort.Ints(t)
m := make(map[int]int)
for i, v := range t {
m[v] = i + 1
}
ans := 1
tree := newBinaryIndexedTree(len(m))
for _, v := range nums {
x := m[v]
t := tree.query(x-1) + 1
if ans < t {
ans = t
}
tree.update(x, t)
}
return ans
}
impl Solution {
pub fn length_of_lis(nums: Vec<i32>) -> i32 {
let n = nums.len();
let mut dp = vec![1; n];
for i in 1..n {
for j in 0..i {
if nums[i] > nums[j] {
dp[i] = dp[i].max(dp[j] + 1);
}
}
}
*dp.iter().max().unwrap()
}
}