输入两棵二叉树A和B,判断B是不是A的子结构。(约定空树不是任意一个树的子结构)
B是A的子结构, 即 A中有出现和B相同的结构和节点值。
例如:
给定的树 A:
3
/ \
4 5
/ \
1 2
给定的树 B:
4
/
1
返回 true,因为 B 与 A 的一个子树拥有相同的结构和节点值。
示例 1:
输入:A = [1,2,3], B = [3,1] 输出:false
示例 2:
输入:A = [3,4,5,1,2], B = [4,1] 输出:true
限制:
0 <= 节点个数 <= 10000
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isSubStructure(self, A: TreeNode, B: TreeNode) -> bool:
def dfs(A, B):
if B is None:
return True
if A is None or A.val != B.val:
return False
return dfs(A.left, B.left) and dfs(A.right, B.right)
if A is None or B is None:
return False
return dfs(A, B) or self.isSubStructure(A.left, B) or self.isSubStructure(A.right, B)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isSubStructure(TreeNode A, TreeNode B) {
if (A == null || B == null) {
return false;
}
return dfs(A, B) || isSubStructure(A.left, B) || isSubStructure(A.right, B);
}
private boolean dfs(TreeNode A, TreeNode B) {
if (B == null) {
return true;
}
if (A == null || A.val != B.val) {
return false;
}
return dfs(A.left, B.left) && dfs(A.right, B.right);
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} A
* @param {TreeNode} B
* @return {boolean}
*/
var isSubStructure = function (A, B) {
function dfs(A, B) {
if (!B) return true;
if (!A || A.val != B.val) return false;
return dfs(A.left, B.left) && dfs(A.right, B.right);
}
if (!A || !B) return false;
return dfs(A, B) || isSubStructure(A.left, B) || isSubStructure(A.right, B);
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isSubStructure(A *TreeNode, B *TreeNode) bool {
var dfs func(A, B *TreeNode) bool
dfs = func(A, B *TreeNode) bool {
if B == nil {
return true
}
if A == nil || A.Val != B.Val {
return false
}
return dfs(A.Left, B.Left) && dfs(A.Right, B.Right)
}
if A == nil || B == nil {
return false
}
return dfs(A, B) || isSubStructure(A.Left, B) || isSubStructure(A.Right, B)
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isSubStructure(TreeNode* A, TreeNode* B) {
if (!A || !B) return 0;
return dfs(A, B) || isSubStructure(A->left, B) || isSubStructure(A->right, B);
}
bool dfs(TreeNode* A, TreeNode* B) {
if (!B) return 1;
if (!A || A->val != B->val) return 0;
return dfs(A->left, B->left) && dfs(A->right, B->right);
}
};
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function isSubStructure(A: TreeNode | null, B: TreeNode | null): boolean {
if (A == null || B == null) {
return false;
}
return dfs(A, B) || isSubStructure(A.left, B) || isSubStructure(A.right, B);
}
function dfs(A: TreeNode | null, B: TreeNode | null) {
if (B == null) {
return true;
}
if (A == null) {
return false;
}
return A.val === B.val && dfs(A.left, B.left) && dfs(A.right, B.right);
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
pub fn is_sub_structure(
a: Option<Rc<RefCell<TreeNode>>>,
b: Option<Rc<RefCell<TreeNode>>>,
) -> bool {
Self::is_sub_structure_help(&a, &b)
}
fn is_sub_structure_help(
a: &Option<Rc<RefCell<TreeNode>>>,
b: &Option<Rc<RefCell<TreeNode>>>,
) -> bool {
if a.is_none() || b.is_none() {
return false;
}
Self::dfs(a, b)
|| Self::is_sub_structure_help(&a.as_ref().unwrap().borrow().left, b)
|| Self::is_sub_structure_help(&a.as_ref().unwrap().borrow().right, b)
}
fn dfs(a: &Option<Rc<RefCell<TreeNode>>>, b: &Option<Rc<RefCell<TreeNode>>>) -> bool {
if b.is_none() {
return true;
}
if a.is_none() {
return false;
}
let a = a.as_ref().unwrap().borrow();
let b = b.as_ref().unwrap().borrow();
a.val == b.val && Self::dfs(&a.left, &b.left) && Self::dfs(&a.right, &b.right)
}
}
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public bool IsSubStructure(TreeNode A, TreeNode B) {
if (A == null || B == null) {
return false;
}
return dfs(A, B) || IsSubStructure(A.left, B) || IsSubStructure(A.right, B);
}
public bool dfs(TreeNode A, TreeNode B) {
if (B == null) {
return true;
}
if (A == null || A.val != B.val) {
return false;
}
return dfs(A.left, B.left) && dfs(A.right, B.right);
}
}