-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain_SealNeRF.py
356 lines (304 loc) · 17.5 KB
/
main_SealNeRF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import torch
import numpy as np
import argparse
import json5
from SealNeRF.types import BackBoneTypes, CharacterTypes
from SealNeRF.provider import SealDataset, SealRandomDataset
# from SealNeRF.gui import NeRFGUI
from SealNeRF.trainer import get_trainer
from SealNeRF.network import get_network
from nerf.utils import seed_everything, PSNRMeter, LPIPSMeter
from functools import partial
from loss import huber_loss
# torch.autograd.set_detect_anomaly(True)
if __name__ == '__main__':
TeacherTrainer = get_trainer(BackBoneTypes.NGP, CharacterTypes.Teacher)
StudentTrainer = get_trainer(BackBoneTypes.NGP, CharacterTypes.Student)
TeacherNetwork = get_network(BackBoneTypes.NGP, CharacterTypes.Teacher)
StudentNetwork = get_network(BackBoneTypes.NGP, CharacterTypes.Student)
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str)
parser.add_argument('-O', action='store_true',
help="equals --fp16 --cuda_ray --preload")
parser.add_argument('--test', action='store_true', help="test mode")
parser.add_argument('--workspace', type=str, default='workspace')
parser.add_argument('--seed', type=int, default=0)
# training options
parser.add_argument('--iters', type=int, default=30000,
help="training iters")
parser.add_argument('--extra_epochs', type=int, default=None,
help="extra training epochs, overwrites iters")
parser.add_argument('--lr', type=float, default=1e-2,
help="initial learning rate")
parser.add_argument('--ckpt', type=str, default='latest')
parser.add_argument('--num_rays', type=int, default=4096,
help="num rays sampled per image for each training step")
parser.add_argument('--log2_hashmap_size', type=int, default=19)
parser.add_argument('--cuda_ray', action='store_true',
help="use CUDA raymarching instead of pytorch")
parser.add_argument('--max_steps', type=int, default=1024,
help="max num steps sampled per ray (only valid when using --cuda_ray)")
parser.add_argument('--num_steps', type=int, default=512,
help="num steps sampled per ray (only valid when NOT using --cuda_ray)")
parser.add_argument('--upsample_steps', type=int, default=0,
help="num steps up-sampled per ray (only valid when NOT using --cuda_ray)")
parser.add_argument('--update_extra_interval', type=int, default=16,
help="iter interval to update extra status (only valid when using --cuda_ray)")
parser.add_argument('--max_ray_batch', type=int, default=4096,
help="batch size of rays at inference to avoid OOM (only valid when NOT using --cuda_ray)")
parser.add_argument('--patch_size', type=int, default=1,
help="[experimental] render patches in training, so as to apply LPIPS loss. 1 means disabled, use [64, 32, 16] to enable")
# network backbone options
parser.add_argument('--fp16', action='store_true',
help="use amp mixed precision training")
parser.add_argument('--ff', action='store_true',
help="use fully-fused MLP")
parser.add_argument('--tcnn', action='store_true', help="use TCNN backend")
# dataset options
parser.add_argument('--color_space', type=str, default='srgb',
help="Color space, supports (linear, srgb)")
parser.add_argument('--preload', action='store_true',
help="preload all data into GPU, accelerate training but use more GPU memory")
# (the default value is for the fox dataset)
parser.add_argument('--bound', type=float, default=2,
help="assume the scene is bounded in box[-bound, bound]^3, if > 1, will invoke adaptive ray marching.")
parser.add_argument('--scale', type=float, default=0.33,
help="scale camera location into box[-bound, bound]^3")
parser.add_argument('--offset', type=float, nargs='*',
default=[0, 0, 0], help="offset of camera location")
parser.add_argument('--dt_gamma', type=float, default=1/128,
help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
parser.add_argument('--dt_gamma_proxy', type=float, default=1/128)
parser.add_argument('--min_near', type=float, default=0.2,
help="minimum near distance for camera")
parser.add_argument('--density_thresh', type=float, default=10,
help="threshold for density grid to be occupied")
parser.add_argument('--bg_radius', type=float, default=-1,
help="if positive, use a background model at sphere(bg_radius)")
# seal options
parser.add_argument('--seal_config', type=str, default='')
# pretraining strategy
parser.add_argument('--pretraining_epochs', type=int, default=100,
help="num epochs for local pretraining")
# local
parser.add_argument('--pretraining_local_point_step', type=float, default=0.001,
help="pretraining point sampling step")
parser.add_argument('--pretraining_local_angle_step', type=float, default=45,
help="pretraining angle sampling step in degree")
# surrounding
parser.add_argument('--pretraining_surrounding_point_step', type=float, default=0.01,
help="pretraining point sampling step")
parser.add_argument('--pretraining_surrounding_angle_step', type=float, default=45,
help="pretraining angle sampling step in degree")
parser.add_argument('--pretraining_surrounding_bounds_extend', type=float, default=0.1,
help="pretraining bounds extend")
# global
parser.add_argument('--pretraining_global_point_step', type=float, default=-1,
help="pretraining point sampling step")
parser.add_argument('--pretraining_global_angle_step', type=float, default=45,
help="pretraining angle sampling step in degree")
parser.add_argument('--pretraining_batch_size', type=int, default=6144000,
help="pretraining angle sampling step in degree")
parser.add_argument('--pretraining_lr', type=float, default=0.07,
help="pretraining learning rate")
# wether to use generated camera poses rotating the seal_config's pose_center within pose_radius
parser.add_argument('--custom_pose', action='store_true',
help="use generated poses")
# GUI options
parser.add_argument('--gui', action='store_true', help="start a GUI")
parser.add_argument('--W', type=int, default=1920, help="GUI width")
parser.add_argument('--H', type=int, default=1080, help="GUI height")
parser.add_argument('--radius', type=float, default=5,
help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=50,
help="default GUI camera fovy")
parser.add_argument('--max_spp', type=int, default=64,
help="GUI rendering max sample per pixel")
# experimental
parser.add_argument('--error_map', action='store_true',
help="use error map to sample rays")
parser.add_argument('--clip_text', type=str, default='',
help="text input for CLIP guidance")
parser.add_argument('--rand_pose', type=int, default=-1,
help="<0 uses no rand pose, =0 only uses rand pose, >0 sample one rand pose every $ known poses")
# teacher model
parser.add_argument('--teacher_workspace', type=str,
default='', help="teacher trainer workspace")
parser.add_argument('--teacher_ckpt', type=str, default='latest')
# secondary teacher model, only implemented with `cuda_ray` backend
# this is used for merging two different teacher models into the student model
# teacher model handles the non-mapped points, while secondary teacher model handles the mapped points.
parser.add_argument('--secondary_teacher_workspace', type=str,
default=None, help="teacher trainer workspace")
parser.add_argument('--secondary_teacher_ckpt', type=str, default='latest')
# dataset options for sec-teacher json.
parser.add_argument('--secondary_teacher_options',
type=json5.loads, default='{}')
# eval options
parser.add_argument('--eval_interval', type=int,
default=50, help="eval_interval")
parser.add_argument('--eval_count', type=int,
default=10, help="eval_count")
# test option
parser.add_argument('--test_type', type=str,
default='test', help="test_type")
parser.add_argument('--proxy_batch', type=int,
default=1, help="bigger for slower proxy while less chance to oom")
opt = parser.parse_args()
if not opt.teacher_workspace:
opt.teacher_workspace = opt.workspace
if opt.O:
opt.fp16 = True
opt.cuda_ray = True
opt.preload = True
if opt.patch_size > 1:
opt.error_map = False # do not use error_map if use patch-based training
# assert opt.patch_size > 16, "patch_size should > 16 to run LPIPS loss."
assert opt.num_rays % (
opt.patch_size ** 2) == 0, "patch_size ** 2 should be dividable by num_rays."
# if opt.ff:
# opt.fp16 = True
# assert opt.bg_radius <= 0, "background model is not implemented for --ff"
# from nerf.network_ff import NeRFNetwork
# elif opt.tcnn:
# opt.fp16 = True
# assert opt.bg_radius <= 0, "background model is not implemented for --tcnn"
# from nerf.network_tcnn import NeRFNetwork
# else:
# # from nerf.network import NeRFNetwork
# from SealNeRF.network import SelaNeRFStudentNetwork
if not opt.gui and not opt.seal_config:
raise ValueError("Requires seal config path")
print(opt)
seed_everything(opt.seed)
teacher_model = TeacherNetwork(
encoding="hashgrid",
bound=opt.bound,
cuda_ray=opt.cuda_ray,
density_scale=1,
min_near=opt.min_near,
density_thresh=opt.density_thresh,
bg_radius=opt.bg_radius,
log2_hashmap_size=opt.log2_hashmap_size
)
if not opt.gui:
teacher_model.init_mapper(opt.seal_config)
teacher_model.train(False)
print(teacher_model)
model = StudentNetwork(
encoding="hashgrid",
bound=opt.bound,
cuda_ray=opt.cuda_ray,
density_scale=1,
min_near=opt.min_near,
density_thresh=opt.density_thresh,
bg_radius=opt.bg_radius,
log2_hashmap_size=opt.log2_hashmap_size
)
if not opt.gui:
model.init_mapper(mapper=teacher_model.seal_mapper)
print(model)
use_secondary_teacher = opt.secondary_teacher_workspace is not None
if use_secondary_teacher:
sec_opt = argparse.Namespace(**opt.secondary_teacher_options)
sec_teacher_model = TeacherNetwork(
encoding="hashgrid",
bound=sec_opt.bound,
cuda_ray=opt.cuda_ray,
density_scale=1,
min_near=sec_opt.min_near,
density_thresh=sec_opt.density_thresh,
bg_radius=sec_opt.bg_radius,
)
if not opt.gui:
sec_teacher_model.init_mapper(mapper=teacher_model.seal_mapper)
sec_teacher_model.train(False)
print(sec_teacher_model)
criterion = torch.nn.MSELoss(reduction='none')
#criterion = partial(huber_loss, reduction='none')
# criterion = torch.nn.HuberLoss(reduction='none', beta=0.1) # only available after torch 1.10 ?
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if opt.test:
metrics = [PSNRMeter(), LPIPSMeter(device=device)]
trainer = TeacherTrainer('ngp', opt, model, device=device, workspace=opt.workspace,
criterion=criterion, fp16=opt.fp16, metrics=metrics, use_checkpoint=opt.ckpt)
if use_secondary_teacher:
sec_teacher_trainer = TeacherTrainer('ngp', sec_opt, sec_teacher_model, device=device, workspace=opt.secondary_teacher_workspace, criterion=criterion,
fp16=opt.fp16, metrics=metrics, use_checkpoint=opt.secondary_teacher_ckpt)
# bind it to model and the infer will be automatically proxied.
# see SealNeRF/renderer.py
trainer.model.secondary_teacher_model = sec_teacher_trainer.model
if opt.gui:
from nerf.gui import NeRFGUI
gui = NeRFGUI(opt, trainer)
gui.render()
else:
test_loader = SealDataset(
opt, device=device, type=opt.test_type).dataloader()
if test_loader.has_gt:
# blender has gt, so evaluate it.
trainer.evaluate(test_loader)
trainer.test(test_loader, write_video=True) # test and save video
trainer.test(test_loader, write_video=False) # test and save video
trainer.save_mesh(resolution=256, threshold=10)
else:
def optimizer(model): return torch.optim.Adam(
model.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15)
# decay to 0.1 * init_lr at last iter step
def scheduler(optimizer): return torch.optim.lr_scheduler.LambdaLR(
optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1))
metrics = [PSNRMeter(), LPIPSMeter(device=device)]
teacher_trainer = TeacherTrainer('ngp', opt, teacher_model, device=device, workspace=opt.teacher_workspace, optimizer=optimizer, criterion=criterion,
ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, scheduler_update_every_step=True, metrics=metrics, use_checkpoint=opt.teacher_ckpt, eval_interval=50)
if use_secondary_teacher:
sec_teacher_trainer = TeacherTrainer('ngp', sec_opt, sec_teacher_model, device=device, workspace=opt.secondary_teacher_workspace, optimizer=optimizer, criterion=criterion,
ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, scheduler_update_every_step=True, metrics=metrics, use_checkpoint=opt.secondary_teacher_ckpt, eval_interval=50)
# bind it to model and the infer will be automatically proxied.
# see SealNeRF/renderer.py
teacher_trainer.model.secondary_teacher_model = sec_teacher_trainer.model
trainer = StudentTrainer('ngp', opt, model, teacher_trainer.model, proxy_eval=True,
device=device, workspace=opt.workspace, optimizer=optimizer, criterion=criterion, ema_decay=0.95,
fp16=opt.fp16, lr_scheduler=scheduler, scheduler_update_every_step=True, metrics=metrics, use_checkpoint=opt.ckpt, eval_interval=opt.eval_interval, eval_count=opt.eval_count, max_keep_ckpt=65535)
if not opt.gui:
trainer.init_pretraining(epochs=opt.pretraining_epochs,
local_point_step=opt.pretraining_local_point_step,
local_angle_step=opt.pretraining_local_angle_step,
surrounding_point_step=opt.pretraining_surrounding_point_step,
surrounding_angle_step=opt.pretraining_surrounding_angle_step,
surrounding_bounds_extend=opt.pretraining_surrounding_bounds_extend,
global_point_step=opt.pretraining_global_point_step,
global_angle_step=opt.pretraining_global_angle_step,
batch_size=opt.pretraining_batch_size,
lr=opt.pretraining_lr)
if opt.custom_pose:
train_dataset = SealRandomDataset(
opt, seal_mapper=model.seal_mapper, device=device, type='train')
train_loader = train_dataset.dataloader()
trainer.log(
f'[INFO] Dataset: center={train_dataset.look_at}&radius={train_dataset.radius}')
else:
train_loader = SealDataset(
opt, device=device, type='train').dataloader()
if opt.gui:
from SealNeRF.gui import NeRFGUI
gui = NeRFGUI(opt, teacher_trainer, trainer, train_loader)
gui.render()
else:
if opt.custom_pose:
valid_loader = SealRandomDataset(
opt, seal_mapper=model.seal_mapper, device=device, type='val').dataloader()
else:
valid_loader = SealDataset(
opt, device=device, type='val', downscale=1).dataloader()
max_epoch = np.ceil(opt.iters / len(train_loader)).astype(np.int32)
trainer.log(
f'[INFO] Proxy train/eval/test: {trainer.proxy_train}/{trainer.proxy_eval}/{trainer.proxy_test}')
trainer.train(train_loader, valid_loader, max_epoch, proxy_batch=opt.proxy_batch)
# also test
test_loader = SealDataset(
opt, device=device, type=opt.test_type).dataloader()
# teacher_trainer.test(test_loader, write_video=False)
# if test_loader.has_gt:
# trainer.evaluate(test_loader) # blender has gt, so evaluate it.
trainer.test(test_loader, write_video=True) # test and save video
trainer.save_mesh(resolution=256, threshold=10)