description |
---|
NLP Knowledge and experiences |
import sklearn
from sklearn.feature_extraction.text import CountVectorizer
# instantiate an ngram counter
counts = CountVectorizer(analyzer='word', ngram_range=(n,n))
# create a dictionary of n-grams by calling `.fit`
vocab2int = counts.fit([a_text, s_text]).vocabulary_
- CS 224N (Don't remember why i need this: 51506490)
- https://www.fast.ai/
- Intro to TensorFlow for Deep Learning | Udacity
- Embedding projector - visualization of high-dimensional data
- LDA visualized using t-SNE and Bokeh | Kaggle
- (PDF) Classification of Twitter Users Who Tweet About E-Cigarettes
- Visualizing Top Tweeps with t-SNE, in Javascript