-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_ape.py
74 lines (59 loc) · 2.52 KB
/
main_ape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import fire
from data.instruction_induction.load_data import load_data, tasks
from exec_accuracy import exec_accuracy_evaluator
from config import PROMPT_SET, Negative_SET, APE_PROMPT_SET, APE_PROMPTs
import template
import os
import random
def getPrompt(ori_prompt, num_str):
new_prompt = ori_prompt
if num_str > 0:
new_prompt = ori_prompt + Negative_SET[num_str - 1]
return new_prompt
def run(task, model, pnum, few_shot):
assert task in tasks, 'Task not found!'
test_data = load_data('eval', task)
eval_template = "Instruction: [PROMPT]\n\nInput: [INPUT]\nAnswer: [OUTPUT]"
# origin_prompt = PROMPT_SET[task]
origin_prompt = APE_PROMPTs[task]
# few-shot setting
induce_data = load_data('induce', task)
few_shot_data = induce_data[0], [random.sample(output, 1)[0]
for output in induce_data[1]]
num_demos = 5
demos_template = "Input: [INPUT]\nOutput: [OUTPUT]"
eval_template = "Instruction: [PROMPT]\n\n[full_DEMO]\nInput: [INPUT]\nAnswer: [OUTPUT]"
demos_template = template.DemosTemplate(demos_template)
# Evaluate on test data
print('LLM: ', model)
print('Evaluating on test data...')
new_prompt = getPrompt(origin_prompt, pnum)
print('Prompt: ', new_prompt)
print('Few_shot: ', few_shot)
test_num = min(100, len(test_data[0]))
# p_list = APE_PROMPT_SET[task]
eval_template = template.EvalTemplate(eval_template)
# for p in p_list:
test_res = exec_accuracy_evaluator(prompts=[new_prompt],
eval_template=eval_template,
eval_data=test_data,
llm_model=model, pnum=pnum,
task=task,
num_samples=test_num,
few_shot=few_shot,
demos_template = demos_template,
few_shot_data=few_shot_data,
num_demos=num_demos)
test_score = test_res.sorted()[1][0]
print(f'Test score: {test_score}')
if few_shot == True:
dir_path = f'results/ape_{model}_True'
else:
dir_path = f'results/ape_{model}'
if os.path.exists(dir_path) == False:
os.makedirs(dir_path)
with open(f'{dir_path}/{task}.txt', 'a+') as f:
f.write(f'Test score: {test_score}\n')
f.write(f'Prompt(few-shot: {few_shot}): {new_prompt}\n')
if __name__ == '__main__':
fire.Fire(run)