-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathrecognition_net.lua
786 lines (675 loc) · 29.1 KB
/
recognition_net.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
require 'nn'
require 'maskSoftMax'
local recog, parent = torch.class('nn.recog_net', 'nn.Module')
function recog:__init(opt)
parent.__init(self)
opt = opt or {}
self.vocab_size = getopt(opt, 'vocab_size')
self.input_encoding_size = getopt(opt, 'input_encoding_size')
self.rnn_size = getopt(opt, 'rnn_size')
self.seq_length = getopt(opt, 'seq_length')
self.num_layers = getopt(opt, 'num_layers', 2)
self.idx_to_token = getopt(opt, 'idx_to_token')
self.dropout = getopt(opt, 'dropout', 0)
opt.std = getopt(opt, 'std', 0.01)
self.batch_size = getopt(opt, 'batch_size')
self.beam_size = opt.beam_size
opt.conv_feat_size = self.rnn_size
opt.embedding_size = self.rnn_size
self.max_width = getopt(opt, 'max_width')
self.max_height = getopt(opt, 'max_height')
self.output_width = self.max_width*self.max_height
self.nets = {}
self.nets.preprocess = nn.Sequential()
self.nets.preprocess:add(nn.SpatialMaxPooling(1,6,1,1,0,0))
self.nets.preprocess:add(nn.View(512, -1):setNumInputDims(3))
self.nets.preprocess:add(nn.Transpose({2, 3}))
self.nets.enc_core = self:lstm(self.rnn_size, 1, self.rnn_size, self.num_layers, 0)
self.START_TOKEN = self.vocab_size + 1
self.END_TOKEN = self.vocab_size + 1
self.NULL_TOKEN = self.vocab_size + 2
self.sample_argmax = true
local V, W = self.vocab_size, self.input_encoding_size
self.nets.lookup_table = nn.LookupTable(V+2, W)
self.nets.attention_nn = self:build_attention_nn(opt)
self.lstm_input_size = self.input_encoding_size
self.nets.core = self:lstm(self.lstm_input_size, 1, self.rnn_size, self.num_layers, 0)
self.nets.proj = nn.Sequential()
self.nets.proj:add(nn.Linear(self.rnn_size*2, self.vocab_size+1))
self.nets.proj:add(nn.LogSoftMax())
self.core_output = torch.Tensor()
self:_createInitState_enc(1)
self:_createInitState(1)
self:training()
end
function recog:build_attention_nn(opt)
local conv_feat_maps = nn.Identity()()
local prev_h = nn.Identity()()
local mask = nn.Identity()()
-- compute attention coefficients
local orgfeat_embed = nn.View(self.output_width):setNumInputDims(3)(conv_feat_maps)
local orgfeat_embed1 = nn.View(-1, opt.conv_feat_size, self.output_width)(orgfeat_embed)
local orgfeat_embed2 = nn.Transpose({2, 3})(orgfeat_embed1)
-- convolution operation
local neighbor_feat = nn.SpatialConvolution(opt.conv_feat_size, opt.embedding_size, 3, 3, 1, 1, 1, 1)(conv_feat_maps)
local X_embed = nn.View(self.output_width):setNumInputDims(3)(neighbor_feat)
local X_embed1 = nn.View(-1, opt.embedding_size, self.output_width)(X_embed)
local X_embed2 = nn.Transpose({2, 3})(X_embed1)
-- Compute e
-- Linear Transform: batch_size x input_size_g --> batch_size x embedding_size
local g_embed = nn.Linear(opt.rnn_size, opt.embedding_size)(prev_h)
-- Replicate: batch_size x embedding_size --> batch_size x seq_length_X x embedding_size
local g_embed_replicate = nn.Replicate(self.output_width, 2)(g_embed)
-- Add: batch_size x seq_length_X x embedding_size + batch_size x seq_length_X x embedding_size --> batch_size x seq_length_X x embedding_size
local feat = nn.Dropout(0.5)(nn.Tanh()(nn.CAddTable()({X_embed2, g_embed_replicate})))
-- Reshape: batch_size x seq_length_X x embedding_size --> (batch_size x seq_length_X) x embedding_size
-- Linear Transform: (batch_size x seq_length_X) x embedding_size --> (batch_size x seq_length_X) x 1
local e = nn.Linear(opt.embedding_size, 1)(nn.View(-1, opt.embedding_size)(feat))
-- Compute attention weights
-- Reshape: (batch_size x seq_length_X) x 1 --> batch_size x seq_length_X
-- Softmax
local alpha = nn.maskSoftMax()({nn.View(-1, self.output_width)(e),mask})
-- Reshape: batch_size x seq_length_X --> batch_size x 1 x seq_length_X
local alpha2 = nn.View(1,-1):setNumInputDims(1)(alpha)
-- Compute attended feature
-- Matrix Multiply: batch_size x <1 x seq_length_X,seq_length_X x input_size_X> = batch_size x 1 x input_size_X
local Att = nn.MM(false, false)({alpha2, orgfeat_embed2})
-- Reshape: batch_size x 1 x input_size_X --> batch_size x input_size_X
local att_out = nn.View(-1, opt.conv_feat_size)(Att)
-- -- create nn graph module
return nn.gModule({conv_feat_maps, prev_h, mask}, {att_out, alpha})
end
function recog:lstm(input_size, output_size, rnn_size, n, dropout)
dropout = dropout or 0
-- there will be 2*n+1 inputs
local inputs = {}
table.insert(inputs, nn.Identity()()) -- indices giving the sequence of symbols
for L = 1,n do
table.insert(inputs, nn.Identity()()) -- prev_c[L]
table.insert(inputs, nn.Identity()()) -- prev_h[L]
end
local x, input_size_L
local outputs = {}
for L = 1,n do
-- c,h from previos timesteps
local prev_h = inputs[L*2+1]
local prev_c = inputs[L*2]
-- the input to this layer
if L == 1 then
x = inputs[1]
input_size_L = input_size
else
x = outputs[(L-1)*2]
if dropout > 0 then x = nn.Dropout(dropout)(x):annotate{name='drop_' .. L} end -- apply dropout, if any
input_size_L = rnn_size
end
-- evaluate the input sums at once for efficiency
local i2h = nn.Linear(input_size_L, 4 * rnn_size)(x):annotate{name='i2h_'..L}
local h2h = nn.Linear(rnn_size, 4 * rnn_size)(prev_h):annotate{name='h2h_'..L}
local all_input_sums = nn.CAddTable()({i2h, h2h})
local reshaped = nn.Reshape(4, rnn_size)(all_input_sums)
local n1, n2, n3, n4 = nn.SplitTable(2)(reshaped):split(4)
-- decode the gates
local in_gate = nn.Sigmoid()(n1)
local forget_gate = nn.Sigmoid()(n2)
local out_gate = nn.Sigmoid()(n3)
-- decode the write inputs
local in_transform = nn.Tanh()(n4)
-- perform the LSTM update
local next_c = nn.CAddTable()({
nn.CMulTable()({forget_gate, prev_c}),
nn.CMulTable()({in_gate, in_transform})
})
-- gated cells form the output
local next_h = nn.CMulTable()({out_gate, nn.Tanh()(next_c)})
table.insert(outputs, next_c)
table.insert(outputs, next_h)
end
-- set up the decoder
local top_h = outputs[#outputs]
if dropout > 0 then top_h = nn.Dropout(dropout)(top_h):annotate{name='drop_final'} end
local proj = nn.Linear(rnn_size, output_size)(top_h):annotate{name='decoder'}
local logsoft = nn.LogSoftMax()(proj)
table.insert(outputs, logsoft)
return nn.gModule(inputs, outputs)
end
function recog:createClones()
-- construct the net clones
print('constructing clones inside the model')
self.nets.image_encoder = {self.nets.enc_core}
for it=2,self.max_width do
self.nets.image_encoder[it] = self.nets.enc_core:clone('weight', 'bias', 'gradWeight', 'gradBias')
end
self.nets.clones = {self.nets.core}
self.nets.lookup_tables = {self.nets.lookup_table}
self.nets.attention_nns = {self.nets.attention_nn}
self.nets.projs = {self.nets.proj}
for t=2,self.seq_length+2 do
self.nets.clones[t] = self.nets.core:clone('weight', 'bias', 'gradWeight', 'gradBias')
self.nets.lookup_tables[t] = self.nets.lookup_table:clone('weight', 'gradWeight')
self.nets.attention_nns[t] = self.nets.attention_nn:clone('weight', 'bias', 'gradWeight', 'gradBias')
self.nets.projs[t] = self.nets.proj:clone('weight', 'bias', 'gradWeight', 'gradBias')
end
end
--decode sequence with caption scores
function recog:decodeSequence(seq,seqS)
local delimiter = ' '
local captions = {}
local captions_Sco={}
local N, T = seq:size(1), seq:size(2)
for i = 1, N do
local caption = ''
local caption_Sco = 0
for t = 1, T do
local idx = seq[{i, t}]
if idx == self.END_TOKEN or idx == 0 then break end
if t > 1 then
caption = caption .. delimiter
end
if idx ~= 94 then
caption = caption .. self.idx_to_token[idx]
caption_Sco = caption_Sco + seqS[{i, t}]
end
end
caption_Sco=caption_Sco/((string.len(caption)+1)/2)
table.insert(captions, caption)
table.insert(captions_Sco, caption_Sco)
end
return captions, captions_Sco
end
--simply decode the characters
function recog:decodeSequence_org(seq)
local delimiter = ' '
local captions = {}
local N, T = seq:size(1), seq:size(2)
for i = 1, N do
local caption = ''
local caption_Sco = 0
for t = 1, T do
local idx = seq[{i, t}]
if idx == self.END_TOKEN or idx == 0 then break end
if t > 1 then
caption = caption .. delimiter
end
if self.idx_to_token[idx] then
caption = caption .. self.idx_to_token[idx]
else
caption = caption .. ''
end
end
table.insert(captions, caption)
end
return captions
end
--create initial state for encoder LSTM
function recog:_createInitState_enc(batch_size)
assert(batch_size ~= nil, 'batch size must be provided')
-- construct the initial state for encoder LSTM
if not self.enc_init_state then self.enc_init_state = {} end -- lazy init
for h=1,self.num_layers*2 do
-- note, the init state Must be zeros because we are using init_state to init grads in backward call too
if self.enc_init_state[h] then
if self.enc_init_state[h]:size(1) ~= batch_size then
self.enc_init_state[h]:resize(batch_size, self.rnn_size):zero() -- expand the memory
end
else
self.enc_init_state[h] = torch.zeros(batch_size, self.rnn_size)
end
end
self.enc_num_state = #self.enc_init_state
end
--create initial state for decoder LSTM
function recog:_createInitState(batch_size)
assert(batch_size ~= nil, 'batch size must be provided')
-- construct the initial state for decoder LSTM
if not self.init_state then self.init_state = {} end -- lazy init
for h=1,self.num_layers*2 do
-- note, the init state Must be zeros because we are using init_state to init grads in backward call too
if self.init_state[h] then
if self.init_state[h]:size(1) ~= batch_size then
self.init_state[h]:resize(batch_size, self.rnn_size):zero() -- expand the memory
end
else
self.init_state[h] = torch.zeros(batch_size, self.rnn_size)
end
end
self.num_state = #self.init_state
end
--forward
function recog:updateOutput(input)
self.recompute_backward = true
local image_features = input[1]
local gt_sequence = input[2]
self.mask_ques = input[3]
self.ques_seq_len = input[4]
if self.nets.clones == nil then self:createClones() end
if gt_sequence:nElement() > 0 then
-- Add a start token to the start of the gt_sequence, and replace
-- 0 with NULL_TOKEN
local N, T = gt_sequence:size(1), gt_sequence:size(2)
self._gt_with_start = gt_sequence.new(N, T + 1)
self._gt_with_start[{{}, 1}]:fill(self.START_TOKEN)
self._gt_with_start[{{}, {2, T + 1}}]:copy(gt_sequence)
local mask = torch.eq(self._gt_with_start, 0)
self._gt_with_start[mask] = self.NULL_TOKEN
self:_createInitState_enc(N)
self:_createInitState(N)
self.fore_state = {[0] = self.enc_init_state}
self.fore_inputs = {}
self.core_output:resize(N, self.max_width, self.rnn_size):zero()
self.enc_tmax = self.max_width
self.enc_tmin = torch.min(self.ques_seq_len)
local image_vectors=self.nets.preprocess:forward(image_features)
for t=1,self.enc_tmax do
self.fore_inputs[t] = {image_vectors:narrow(2,t,1):contiguous():view(-1, self.rnn_size), unpack(self.fore_state[t-1])}
local enc_out = self.nets.image_encoder[t]:forward(self.fore_inputs[t])
if t > self.enc_tmin then
for i=1,self.enc_num_state+1 do
enc_out[i]:maskedFill(self.mask_ques:sub(1,-1,1,1,t,t):contiguous():view(N,1):expandAs(enc_out[i]):cudaByte(), 0)
end
end
self.fore_state[t] = {}
for i=1,self.enc_num_state do table.insert(self.fore_state[t], enc_out[i]) end
self.core_output:narrow(2,t,1):copy(enc_out[self.enc_num_state])
end
self.encode_output=torch.Tensor(N, self.rnn_size):zero():cuda()
for ip =1, N do
self.encode_output[ip]:copy(self.core_output[{{ip},{self.ques_seq_len[ip]},{}}]:squeeze())
end
self.state = {[0] = self.init_state}
self.inputs = {}
self.tmpcat = {}
self.lookup_tables_inputs = {}
self.tmax = 0
self.output=torch.Tensor(N, T+2, self.vocab_size+1):zero():cuda()
self.mask=nn.View(-1,self.output_width):cuda():forward(self.mask_ques)
local fordraw_attfeat=torch.Tensor(N, T+2, self.output_width):zero():cuda()
for t=1,T+2 do
local xt
if t == 1 then
xt = self.encode_output
else
local it = self._gt_with_start[{{},{t-1}}]:clone()
it=it:view(-1)
xt = self.nets.lookup_tables[t]:forward(it)
end
self.inputs[t] = {xt, unpack(self.state[t-1])}
local out = self.nets.clones[t]:forward(self.inputs[t])
self.state[t] = {}
for i=1,self.num_state do table.insert(self.state[t], out[i]) end
local h_state = self.state[t][self.num_state]
local att_all = self.nets.attention_nns[t]:forward({image_features, h_state, self.mask:contiguous()})
local att = att_all[1]
local attw =att_all[2]
fordraw_attfeat:narrow(2,t,1):copy(attw)
self.tmpcat[t] = torch.cat({h_state, att}, 2)
local proj_out = self.nets.projs[t]:forward(self.tmpcat[t])
self.output:narrow(2,t,1):copy(proj_out)
self.tmax = t
end
self._forward_sampled = false
return self.output
else
self._forward_sampled = true
-- self.beam_size =5
if self.beam_size ~= nil then
print 'running beam search'
self.output = self:beamsearch(image_features, self.beam_size)
return self.output
else
return self:sample(image_features)
end
end
end
function recog:backward(input, gradOutput, scale)
assert(self._forward_sampled == false, 'cannot backprop through sampling')
assert(scale == nil or scale == 1.0)
self.recompute_backward = false
local image_features = input[1]
local N = image_features:size(1)
local dstate = {[self.tmax] = self.init_state}
local dencodings = self.core_output:clone():zero()
local dcontext = image_features:clone():zero()
local gradOutput_rnn=nn.SplitTable(1, 2):cuda():forward(gradOutput)
local dwt={}
for t = self.tmax, 1, -1 do
local dproj = self.nets.projs[t]:backward(self.tmpcat[t], gradOutput_rnn[t])
local dhstate = dproj[{{},{1, self.rnn_size}}]
local dat = dproj[{{},{self.rnn_size+1, self.rnn_size*2}}]
local dat_w = torch.Tensor(N, self.output_width):zero():cuda()
-- backprop attention net
local h_state = self.state[t][self.num_state]
local datt = self.nets.attention_nns[t]:backward({image_features, h_state, self.mask:contiguous()}, {dat:contiguous(), dat_w:contiguous()})
local dconv, dh_state, _ = unpack(datt)
dhstate:add(dh_state)
dcontext:add(dconv)
local d_core_outt = torch.zeros(N, 1):cuda()
local dout = {}
for k=1,#dstate[t]-1 do table.insert(dout, dstate[t][k]) end
table.insert(dout, dstate[t][self.num_state]:add(dhstate))
table.insert(dout, d_core_outt)
local dinputs = self.nets.clones[t]:backward(self.inputs[t], dout)
local dxt = dinputs[1]:clone()
dstate[t-1] = {}
for k=2,self.num_state+1 do table.insert(dstate[t-1], dinputs[k]) end
if t == 1 then
local dwt1 = torch.reshape(dxt, N, 1, self.rnn_size)
for k = 1, N do
dencodings[{{k},{self.ques_seq_len[k]},{}}]:add(dwt1[k])
end
else
local it = self._gt_with_start[{{},{t-1}}]:clone()
it=it:view(-1)
self.nets.lookup_tables[t]:backward(it, dxt) -- backprop into lookup table
end
end
-- go backwards and lets compute gradients
local d_core_state = {[self.enc_tmax] = self.enc_init_state}
local d_core_outt = torch.zeros(N, 1):cuda()
local d_embed_core = d_embed_core or self.core_output:new()
d_embed_core:resize(N, self.max_width, self.rnn_size):zero()
for t=self.enc_tmax,1,-1 do
-- concat state gradients and output vector gradients at time step t
local dout = {}
table.insert(dout, d_core_state[t][1])
table.insert(dout, d_core_state[t][2])
table.insert(dout, d_core_state[t][3])
table.insert(dout, dencodings:narrow(2,t,1):contiguous():view(-1, self.rnn_size))
table.insert(dout, d_core_outt)
local dinputs = self.nets.image_encoder[t]:backward(self.fore_inputs[t], dout)
if t > self.enc_tmin then
for k=1,self.enc_num_state+1 do
dinputs[k]:maskedFill(self.mask_ques:sub(1,-1,1,1,t,t):contiguous():view(N,1):expandAs(dinputs[k]):cudaByte(), 0)
end
end
d_core_state[t-1] = {} -- copy over rest to state grad
for k=2,self.enc_num_state+1 do table.insert(d_core_state[t-1], dinputs[k]) end
d_embed_core:narrow(2,t,1):copy(dinputs[1])
end
local gradInput_t11 = self.nets.preprocess:backward(image_features, d_embed_core)
local gradInput_t1 = torch.add(gradInput_t11,dcontext)
local gradInput_t2 = input[2].new(#input[2]):zero()
local gradInput_t3 = input[3].new(#input[3]):zero()
local gradInput_t4 = input[4].new(#input[4]):zero()
self.gradInput={gradInput_t1, gradInput_t2, gradInput_t3, gradInput_t4}
return self.gradInput
end
--[[
Convert a ground-truth sequence of shape to a target suitable for the
TemporalCrossEntropyCriterion.
Input:
- gt_sequence: Tensor of shape (N, T) where each element is in the range [0, V];
an entry of 0 is a null token.
--]]
function recog:getTarget(gt_sequence)
local N, T = gt_sequence:size(1), gt_sequence:size(2)
local target = torch.LongTensor(N, T + 2):zero()
target[{{}, {2, T + 1}}]:copy(gt_sequence)
for i = 1, N do
for t = 2, T + 2 do
if target[{i, t}] == 0 then
-- Replace the first null with an end token
target[{i, t}] = self.END_TOKEN
break
end
end
end
return target:type(gt_sequence:type())
end
-- Greedy decoding by taking the symbol with the highest softmax score
function recog:sample(image_features)
local N, T = image_features:size(1), self.seq_length
local seq = torch.LongTensor(N, T+2):zero()
local seqScore = torch.Tensor(N, T+2):zero()
local scores, scores_t
local fordraw_attfeat=torch.Tensor(N, T+2, self.output_width):zero():cuda()
local pre_output=torch.Tensor(N, T+2, self.vocab_size+1):zero():cuda()
self:_createInitState_enc(N)
local fore_state = {[0] = self.enc_init_state}
local fore_inputs = {}
local core_output=torch.Tensor(N, self.max_width, self.rnn_size):zero():cuda()
local enc_tmax = self.max_width
local enc_tmin = torch.min(self.ques_seq_len)
local image_vectors=self.nets.preprocess:forward(image_features)
for t=1,enc_tmax do
fore_inputs[t] = {image_vectors:narrow(2,t,1):contiguous():view(-1, self.rnn_size), unpack(fore_state[t-1])}
local enc_out = self.nets.enc_core:forward(fore_inputs[t])
if t > enc_tmin then
for i=1,self.enc_num_state+1 do
enc_out[i]:maskedFill(self.mask_ques:sub(1,-1,1,1,t,t):contiguous():view(N,1):expandAs(enc_out[i]):cudaByte(), 0)
end
end
fore_state[t] = {} -- the rest is state
for i=1,self.enc_num_state do table.insert(fore_state[t], enc_out[i]) end
core_output:narrow(2,t,1):copy(enc_out[self.enc_num_state])
end
local temp_encode_output=torch.Tensor(N, self.rnn_size):zero():cuda()
for ip =1, N do
temp_encode_output[ip]:copy(core_output[{{ip},{self.ques_seq_len[ip]},{}}]:squeeze(1))
end
self:_createInitState(N)
local state = self.init_state
local mask=nn.View(-1,self.output_width):cuda():forward(self.mask_ques)
for t=1,T+2 do
local xt, it
if t == 1 then
xt = temp_encode_output
elseif t ==2 then
it = torch.LongTensor(N):fill(self.START_TOKEN)
xt = self.nets.lookup_table:forward(it)
else
it = seq[{{}, {t-1, t-1}}]:clone()
it = it:view(-1):long()
xt = self.nets.lookup_table:forward(it)
end
local inputs = {xt,unpack(state)}
local out = self.nets.core:forward(inputs)
state = {}
for j=1,self.num_state do table.insert(state, out[j]) end
-- get attention feature
local h_state = state[self.num_state]
local att_all = self.nets.attention_nn:forward({image_features, h_state, mask:contiguous()})
local att = att_all[1]
local attw =att_all[2]
fordraw_attfeat:narrow(2,t,1):copy(attw)
local tmpcat = torch.cat(h_state, att)
local scores = self.nets.proj:forward(tmpcat)
pre_output:narrow(2,t,1):copy(scores)
local idxscore, idx = torch.max(scores, 2)
local idxscore2 = torch.exp(idxscore)
seq[{{}, t}]:copy(idx)
seqScore[{{}, t}]:copy(idxscore2)
end
self.output = {pre_output, seq[{{},{2,T+2}}], seqScore[{{},{2,T+2}}], fordraw_attfeat}
return self.output
end
--using beamsearch for decoding by maintaining the 'beam_size' candidates
function recog:beamsearch(image_features, beam_size)
beam_size = beam_size or 20
local N, T = image_features:size(1), self.seq_length
local seq = torch.LongTensor(N, T+1):zero():cuda()
local seqScore = torch.Tensor(N, T+1):zero():cuda()
local scores, scores_t
local fordraw_attfeat=torch.Tensor(N, T+2, self.output_width):zero():cuda()
local pre_output=torch.Tensor(N, T+2, self.vocab_size+1):zero():cuda()
self:_createInitState_enc(N)
local fore_state = {[0] = self.enc_init_state}
local fore_inputs = {}
local core_output=torch.Tensor(N, self.max_width, self.rnn_size):zero():cuda()
local enc_tmax = self.max_width
local enc_tmin = torch.min(self.ques_seq_len)
local image_vectors=self.nets.preprocess:forward(image_features)
for t=1,enc_tmax do
fore_inputs[t] = {image_vectors:narrow(2,t,1):contiguous():view(-1, self.rnn_size), unpack(fore_state[t-1])}
local enc_out = self.nets.enc_core:forward(fore_inputs[t])
if t > enc_tmin then
for i=1,self.enc_num_state+1 do
enc_out[i]:maskedFill(self.mask_ques:sub(1,-1,1,1,t,t):contiguous():view(N,1):expandAs(enc_out[i]):cudaByte(), 0)
end
end
fore_state[t] = {} -- the rest is state
for i=1,self.enc_num_state do table.insert(fore_state[t], enc_out[i]) end
core_output:narrow(2,t,1):copy(enc_out[self.enc_num_state])
end
local temp_encode_output=torch.Tensor(N, self.rnn_size):zero():cuda()
for ip =1, N do
temp_encode_output[ip]:copy(core_output[{{ip},{self.ques_seq_len[ip]},{}}]:squeeze(1))
end
local mask=nn.View(-1,self.output_width):cuda():forward(self.mask_ques)
for i = 1, N do
self:_createInitState(1)
local state = self.init_state
local image_features_i=image_features[{{i},{},{},{}}]
local mask_i=mask[{{i},{}}]:contiguous()
local xt = temp_encode_output[{{i},{}}]
local inputs = {xt,unpack(state)}
local out = self.nets.core:forward(inputs)
state = {}
for j=1,self.num_state do table.insert(state, out[j]) end
-- get attention feature
local h_state = state[self.num_state]
local att_all = self.nets.attention_nn:forward({image_features_i, h_state, mask_i})
local att = att_all[1]
local attw =att_all[2]
local tmpcat = torch.cat(h_state, att)
local scores = self.nets.proj:forward(tmpcat)
local it = torch.LongTensor(1):fill(self.START_TOKEN)
xt = self.nets.lookup_table:forward(it)
local inputs = {xt,unpack(state)}
local out = self.nets.core:forward(inputs)
state = {}
for j=1,self.num_state do table.insert(state, out[j]) end
-- get attention feature
local h_state = state[self.num_state]
local att_all = self.nets.attention_nn:forward({image_features_i, h_state, mask_i})
local att = att_all[1]
local attw =att_all[2]
local tmpcat = torch.cat(h_state, att)
local scores = self.nets.proj:forward(tmpcat)
-- Initialize our beams to the words with the highest logprobs
local beams = seq.new(beam_size, T+1):fill(self.NULL_TOKEN):cuda()
local beams_pro = seq.new(beam_size, T+1):fill(1.0):cuda()
local beam_logprobs, idx = torch.topk(scores, beam_size, 2, true)
idx=idx:squeeze()
beams[{{}, 1}]:copy(idx)
beams_pro[{{}, 1}]:copy(beam_logprobs)
for il=1,self.num_state do
state[il]=state[il]:expand(beam_size, self.rnn_size):clone()
end
image_features_i=image_features_i:expand(beam_size, image_features_i:size(2), image_features_i:size(3), image_features_i:size(4)):clone()
mask_i = mask_i:expand(beam_size, mask_i:size(2)):clone()
for t=2, T+1 do
it = beams[{{}, {t - 1, t - 1}}]:long()
it = it:view(-1):long()
xt = self.nets.lookup_table:forward(it)
local inputs = {xt,unpack(state)}
local out = self.nets.core:forward(inputs)
state = {}
for j=1,self.num_state do table.insert(state, out[j]) end
-- get attention feature
local h_state = state[self.num_state]
local att_all = self.nets.attention_nn:forward({image_features_i, h_state, mask_i:contiguous()})
local att = att_all[1]
local attw =att_all[2]
local tmpcat = torch.cat(h_state, att)
local next_word_logprobs = self.nets.proj:forward(tmpcat)
-- If a beam already has an END token then any subsequent words should
-- not contribute to its logprobs, so set them to zero
local end_mask = torch.eq(torch.eq(beams, self.END_TOKEN):sum(2), 0)
end_mask = end_mask:type(next_word_logprobs:type())
next_word_logprobs:cmul(end_mask:expandAs(next_word_logprobs))
-- For each beam, find the top beam_size next words
local top_next_word_logprobs, word_idx
= torch.topk(next_word_logprobs, beam_size, 2, true)
local beam_logprobs_dup = beam_logprobs:view(-1, 1)
:expand(beam_size, beam_size)
:contiguous()
:view(beam_size * beam_size)
local all_next_logprobs = top_next_word_logprobs:view(-1)
+ beam_logprobs_dup
beam_logprobs, idx = torch.topk(all_next_logprobs, beam_size, 1, true)
local all_next_beams = beams:view(beam_size, 1, T+1)
:expand(beam_size, beam_size, T+1)
:contiguous()
:view(beam_size * beam_size, T+1)
local all_next_beams_pro = beams_pro:view(beam_size, 1, T+1)
:expand(beam_size, beam_size, T+1)
:contiguous()
:view(beam_size * beam_size, T+1)
all_next_beams[{{}, t}]:copy(word_idx:view(-1))
all_next_beams_pro[{{}, t}]:copy(top_next_word_logprobs:view(-1))
beams = all_next_beams:index(1, idx)
beams_pro = all_next_beams_pro:index(1, idx)
for il=1,self.num_state do
local H = state[il]:size(2)
local state_dup = state[il]:view(beam_size, 1, H)
:expand(beam_size, beam_size, H)
:contiguous()
:view(beam_size * beam_size, H)
state[il] = state_dup:index(1, idx)
end
end
-- After running over all timesteps, copy best beam to seq
local _, best_beam_idx = beam_logprobs:max(1)
seq[i] = beams[best_beam_idx[1]]
seqScore[i] = beams_pro[best_beam_idx[1]]
end
seqScore = torch.exp(seqScore)
local empty = seq.new()
self.output = {empty, seq, seqScore, empty}
return self.output
end
function recog:training()
parent.training(self)
if self.nets.clones == nil then self:createClones() end
self.nets.preprocess:training()
for k,v in pairs(self.nets.image_encoder) do v:training() end
for k,v in pairs(self.nets.clones) do v:training() end
for k,v in pairs(self.nets.lookup_tables) do v:training() end
for k,v in pairs(self.nets.attention_nns) do v:training() end
for k,v in pairs(self.nets.projs) do v:training() end
end
function recog:evaluate()
parent.evaluate(self)
if self.nets.clones == nil then self:createClones() end
self.nets.preprocess:evaluate()
self.nets.enc_core:evaluate()
self.nets.core:evaluate()
self.nets.lookup_table:evaluate()
self.nets.attention_nn:evaluate()
self.nets.proj:evaluate()
for k,v in pairs(self.nets.image_encoder) do v:evaluate() end
for k,v in pairs(self.nets.clones) do v:evaluate() end
for k,v in pairs(self.nets.lookup_tables) do v:evaluate() end
for k,v in pairs(self.nets.attention_nns) do v:evaluate() end
for k,v in pairs(self.nets.projs) do v:evaluate() end
end
function recog:clearState()
if self.nets.clones == nil then self:createClones() end
self.nets.preprocess:clearState()
for k,v in pairs(self.nets.image_encoder) do v:clearState() end
for k,v in pairs(self.nets.clones) do v:clearState() end
for k,v in pairs(self.nets.lookup_tables) do v:clearState() end
for k,v in pairs(self.nets.attention_nns) do v:clearState() end
for k,v in pairs(self.nets.projs) do v:clearState() end
end
function recog:getModulesList()
return {self.nets.enc_core, self.nets.lookup_table, self.nets.core, self.nets.attention_nn, self.nets.proj}
end
function recog:parameters()
-- flatten model parameters and gradients into single vectors
local params, grad_params = {}, {}
for k, m in pairs(self:getModulesList()) do
local p, g = m:parameters()
for _, v in pairs(p) do table.insert(params, v) end
for _, v in pairs(g) do table.insert(grad_params, v) end
end
-- invalidate clones as weight sharing breaks
-- self.nets.image_encoder = nil
self.nets.clones = nil
self.nets.lookup_tables = nil
self.nets.attention_nns = nil
self.nets.projs = nil
-- return all parameters and gradients
return params, grad_params
end