-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathHCFtracker.py
227 lines (180 loc) · 9.92 KB
/
HCFtracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import sys
import cv2
import numpy as np
import torch
from scipy import ndimage
from skimage import transform
from torch.autograd import Variable
import utils
import vgg
import vot
class padding:
def __init__(self):
self.generic = 1.8
self.large = 1
self.height = 0.4
outputlayer = [17,26,35]
numlayers = len(outputlayer)
layerweights = [0.25,0.5,1]
assert (numlayers == len(layerweights))
# network init
model = vgg.VGG_19(outputlayer=outputlayer)
# load partial weights
model_dict = model.state_dict()
# absolute path
params = torch.load('/media/maoxiaofeng/project/GameProject/Visual_Tracking_api/vgg19.pth')
load_dict = {k: v for k, v in params.items() if 'features' in k}
model_dict.update(load_dict)
model.load_state_dict(model_dict)
model.cuda()
# extract features
imgMean = np.array([0.485, 0.456, 0.406], np.float)
imgStd = np.array([0.229, 0.224, 0.225])
class HCFtracker:
def __init__(self, image, region):
self.target_size = np.array([region.height, region.width])
self.pos = [region.y + region.height / 2, region.x + region.width / 2]
self.sz = utils.get_window_size(self.target_size, image.shape[:2], padding())
# position prediction params
self.lamda = 1e-4
output_sigma_factor = 0.1
self.cell_size = 4
self.interp_factor = 0.01
self.x_num = []
self.x_den = []
# scale estimation params
self.current_scale_factor = 1.0
nScales = 33
scale_step = 1.02 # step of one scale level
scale_sigma_factor = 1 / float(4)
self.interp_factor_scale = 0.01
scale_model_max_area = 32 * 16
scale_model_factor = 1.0
self.min_scale_factor = np.power(scale_step,
np.ceil(np.log(5. / np.min(self.sz)) / np.log(scale_step)))
self.max_scale_factor = np.power(scale_step,
np.floor(np.log(np.min(np.divide(image.shape[:2],
self.target_size)))
/ np.log(scale_step)))
if scale_model_factor * scale_model_factor * np.prod(self.target_size) > scale_model_max_area:
scale_model_factor = np.sqrt(scale_model_max_area / np.prod(self.target_size))
self.scale_model_sz = np.floor(self.target_size * scale_model_factor)
# Gaussian shaped label for position perdiction
l1_patch_num = np.floor(self.sz / self.cell_size)
output_sigma = np.sqrt(np.prod(self.target_size)) * output_sigma_factor / self.cell_size
grid_y = np.arange(np.floor(l1_patch_num[0])) - np.floor(l1_patch_num[0] / 2)
grid_x = np.arange(np.floor(l1_patch_num[1])) - np.floor(l1_patch_num[1] / 2)
rs, cs = np.meshgrid(grid_x, grid_y)
y = np.exp(-0.5 / output_sigma ** 2 * (rs ** 2 + cs ** 2))
self.yf = np.fft.fft2(y, axes=(0, 1))
self.cos_window = np.outer(np.hanning(self.yf.shape[0]), np.hanning(self.yf.shape[1]))
# Gaussian shaped label for scale estimation
ss = np.arange(nScales) - np.ceil(nScales / 2)
scale_sigma = np.sqrt(nScales) * scale_sigma_factor
ys = np.exp(-0.5 * (ss ** 2) / scale_sigma ** 2)
self.scaleFactors = np.power(scale_step, -ss)
self.ysf = np.fft.fft(ys)
if nScales % 2 == 0:
self.scale_window = np.hanning(nScales + 1)
self.scale_window = self.scale_window[1:]
else:
self.scale_window = np.hanning(nScales)
# Extracting hierarchical convolutional features and training
img = utils.get_subwindow(image, self.pos, self.sz)
img = transform.resize(img, (224, 224))
img = (img - imgMean) / imgStd
img = np.transpose(img, (2, 0, 1))
feature_ensemble = model(Variable(torch.from_numpy(img[None, :, :, :]).float()).cuda())
for i in range(numlayers):
feature = feature_ensemble[i].data[0].cpu().numpy().transpose((1, 2, 0))
x = ndimage.zoom(feature, (float(self.cos_window.shape[0]) / feature.shape[0],
float(self.cos_window.shape[1]) / feature.shape[1], 1), order=1)
x = np.multiply(x, self.cos_window[:, :, None])
xf = np.fft.fft2(x, axes=(0, 1))
self.x_num.append(np.multiply(self.yf[:, :, None], np.conj(xf)))
self.x_den.append(np.real(np.sum(np.multiply(xf, np.conj(xf)), axis=2)))
# Extracting the sample feature map for the scale filter and training
s = utils.get_scale_subwindow(image, self.pos, self.target_size,
self.current_scale_factor * self.scaleFactors, self.scale_window,
self.scale_model_sz)
sf = np.fft.fftn(s, axes=[0])
self.s_num = np.multiply(self.ysf[:, None], np.conj(sf))
self.s_den = np.real(np.sum(np.multiply(sf, np.conj(sf)), axis=1))
def track(self, image):
test = utils.get_subwindow(image, self.pos, self.sz, self.current_scale_factor)
test = transform.resize(test, (224, 224))
test = (test - imgMean) / imgStd
test = np.transpose(test, (2, 0, 1))
feature_ensemble = model(Variable(torch.from_numpy(test[None, :, :, :]).float()).cuda())
for i in range(numlayers):
feature = feature_ensemble[i].data[0].cpu().numpy().transpose((1, 2, 0))
xt = ndimage.zoom(feature, (float(self.cos_window.shape[0]) / feature.shape[0],
float(self.cos_window.shape[1]) / feature.shape[1], 1), order=1)
xt = np.multiply(xt, self.cos_window[:, :, None])
xtf = np.fft.fft2(xt, axes=(0, 1))
response = np.real(np.fft.ifft2(np.divide(np.sum(np.multiply(self.x_num[i], xtf),
axis=2), (self.x_den[i] + self.lamda)))) * layerweights[i]
if i == 0:
response_final = response
else:
response_final = np.add(response_final, response)
v_centre, h_centre = np.unravel_index(response_final.argmax(), response_final.shape)
vert_delta, horiz_delta = \
[(v_centre - response_final.shape[0] / 2) * self.current_scale_factor * self.cell_size,
(h_centre - response_final.shape[1] / 2) * self.current_scale_factor * self.cell_size]
self.pos = [self.pos[0] + vert_delta, self.pos[1] + horiz_delta]
st = utils.get_scale_subwindow(image, self.pos, self.target_size,
self.current_scale_factor * self.scaleFactors, self.scale_window,
self.scale_model_sz)
stf = np.fft.fftn(st, axes=[0])
scale_reponse = np.real(np.fft.ifftn(np.sum(np.divide(np.multiply(self.s_num, stf),
(self.s_den[:, None] + self.lamda)), axis=1)))
recovered_scale = np.argmax(scale_reponse)
self.current_scale_factor = self.current_scale_factor * self.scaleFactors[recovered_scale]
if self.current_scale_factor < self.min_scale_factor:
self.current_scale_factor = self.min_scale_factor
elif self.current_scale_factor > self.max_scale_factor:
self.current_scale_factor = self.max_scale_factor
# update
update_patch = utils.get_subwindow(image, self.pos, self.sz, scale_factor=self.current_scale_factor)
update_patch = transform.resize(update_patch, (224, 224))
update_patch = (update_patch - imgMean) / imgStd
update_patch = np.transpose(update_patch, (2, 0, 1))
feature_ensemble = model(Variable(torch.from_numpy(update_patch[None, :, :, :]).float()).cuda())
for i in range(numlayers):
feature = feature_ensemble[i].data[0].cpu().numpy().transpose((1, 2, 0))
xl = ndimage.zoom(feature, (float(self.cos_window.shape[0]) / feature.shape[0],
float(self.cos_window.shape[1]) / feature.shape[1], 1), order=1)
xl = np.multiply(xl, self.cos_window[:, :, None])
xlf = np.fft.fft2(xl, axes=(0, 1))
self.x_num[i] = (1 - self.interp_factor) * self.x_num[i] + self.interp_factor * np.multiply(self.yf[:, :, None], np.conj(xlf))
self.x_den[i] = (1 - self.interp_factor) * self.x_den[i] + self.interp_factor * np.real(np.sum(np.multiply(xlf, np.conj(xlf)), axis=2))
sl = utils.get_scale_subwindow(image, self.pos, self.target_size,
self.current_scale_factor * self.scaleFactors, self.scale_window,
self.scale_model_sz)
slf = np.fft.fftn(sl, axes=[0])
new_s_num = np.multiply(self.ysf[:, None], np.conj(slf))
new_s_den = np.real(np.sum(np.multiply(slf, np.conj(slf)), axis=1))
self.s_num = (1 - self.interp_factor) * self.s_num + self.interp_factor * new_s_num
self.s_den = (1 - self.interp_factor) * self.s_den + self.interp_factor * new_s_den
self.final_size = self.target_size * self.current_scale_factor
return vot.Rectangle(self.pos[1] - self.final_size[1] / 2,
self.pos[0] - self.final_size[0] / 2,
self.final_size[1],
self.final_size[0]
)
handle = vot.VOT("rectangle")
selection = handle.region()
imagefile = handle.frame()
if not imagefile:
sys.exit(0)
image = cv2.imread(imagefile)
tracker = HCFtracker(image, selection)
while True:
imagefile = handle.frame()
if not imagefile:
break
image = cv2.imread(imagefile)
region = tracker.track(image)
handle.report(region)
handle.quit()