-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvolume-3.tex
82 lines (57 loc) · 3.24 KB
/
volume-3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
\documentclass[english,reqno,12pt]{amsbook}
\usepackage[paperwidth=5.06in, paperheight=7.81in]{geometry}
\usepackage[T1]{fontenc}
\synctex=-1
% \usepackage{xcolor}
% \usepackage{hyperref}
\usepackage{babel}
\usepackage{textcomp}
\usepackage{mathrsfs}
\usepackage{url}
\usepackage{amstext}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{stmaryrd}
\usepackage{agt}
\makeindex
% \usepackage[all]{xy}
% \usepackage[unicode=true,
% bookmarks=true,bookmarksnumbered=true,bookmarksopen=false,
% breaklinks=false,pdfborder={0 0 0},backref=false,colorlinks=true]
% {hyperref}
\hypersetup{pdftitle={Algebraic General Topology. Book 3: Algebra. Edition 3},
pdfauthor={Victor Porton},
pdfsubject={general topology, algebra},
pdfkeywords={algebraic general topology,quasi-uniform spaces,generalizations of proximity spaces,generalizations of nearness spaces,generalizations of uniform spaces,generalizations of metric spaces,ordered semigroups,ordered monoids,abstract algebra,universal algebra}}
\usepackage{xr,refcount}
\externaldocument[book-]{volume-1}
\newcommand{\bookref}[1]{\ref*{book-#1}}
% Continue numbering of book.pdf
\setcounter{thm}{\getrefnumber{book-finalthm}}
\addtocounter{thm}{-1}
\begin{document}
\title{Algebraic General Topology.\\Book 3: Algebra.\\Edition 3}
\author{Victor Porton}
\email{\href{mailto:[email protected]}{[email protected]}}
\urladdr{\href{http://www.mathematics21.org}{http://www.mathematics21.org}}
\date{\today}
\begin{abstract}
This is the world first study of \emph{ordered semigroup actions}.
I define \emph{space} as an element of an ordered semigroup action, that is a semigroup action conforming to a partial order. Topological spaces, uniform spaces, proximity spaces, (directed) graphs, metric spaces, etc.\ all are spaces. It can be further generalized to ordered precategory actions (that I call \emph{interspaces}). I build basic general topology (continuity, limit, openness, closedness, hausdorffness, compactness, etc.)\ in an arbitrary space. Now general topology is an algebraic theory.
For example, my generalized continuous function are: continuous function for topological spaces, proximally continuous functions for proximity spaces, uniformly continuous functions for uniform spaces, contractions for metric spaces, discretely continuous functions for (directed) graphs.
Was a spell laid onto Earth mathematicians not to find the most important structure in general topology until 2019?
\end{abstract}
\keywords{algebraic general topology, quasi-uniform spaces, generalizations of proximity spaces, generalizations of nearness spaces, generalizations
of uniform spaces, ordered semigroups, ordered monoids, abstract algebra, universal algebra}
\subjclass[2010]{06F05, 06F99, 08A99, 20M30, 20M99, 54J05, 54A05, 54D99, 54E05, 54E15, 54E17, 54E99, 51F99, 54E25, 30L99, 54E35}
\maketitle
\tableofcontents{}
This is a draft.
It is a continuation of \cite{volume-1}.
You can read this text without any knowledge of algebraic general topology~(\cite{volume-1}). But to have some examples of how to apply this theory, you need to know what funcoids and reloids are and how funcoids are related with topological spaces.
\include{chap-osgroups}
% \printindex{}
\bibliographystyle{plain}
\bibliography{refs}
\end{document}